Spatial-Temporal Fusion for High Accuracy Depth Maps Using Dynamic MRFs

被引:79
|
作者
Zhu, Jiejie [1 ,2 ]
Wang, Liang [2 ]
Gao, Jizhou [2 ]
Yang, Ruigang [2 ]
机构
[1] Univ Cent Florida, Dept Comp Sci, Orlando, FL 32826 USA
[2] Univ Kentucky, Dept Comp Sci, Lexington, KY 40507 USA
基金
美国国家科学基金会;
关键词
Stereo; MRFs; time-of-flight sensor; data fusion; global optimization; BELIEF PROPAGATION; STEREO; FIELDS;
D O I
10.1109/TPAMI.2009.68
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time-of-flight range sensors and passive stereo have complimentary characteristics in nature. To fuse them to get high accuracy depth maps varying over time, we extend traditional spatial MRFs to dynamic MRFs with temporal coherence. This new model allows both the spatial and the temporal relationship to be propagated in local neighbors. By efficiently finding a maximum of the posterior probability using Loopy Belief Propagation, we show that our approach leads to improved accuracy and robustness of depth estimates for dynamic scenes.
引用
收藏
页码:899 / 909
页数:11
相关论文
共 50 条
  • [21] Dynamic quantitative phase imaging using deep spatial-temporal prior
    Li, Siteng
    Wang, Fei
    Fu, Zhenfeng
    Bian, Yaoming
    Situ, Guohai
    OPTICS EXPRESS, 2025, 33 (04): : 7482 - 7491
  • [22] Dynamic discrimination analysis: A spatial-temporal SVM
    Mouao-Miranda, Janaina
    Friston, Karl J.
    Brammer, Michael
    NEUROIMAGE, 2007, 36 (01) : 88 - 99
  • [23] Spatial-Temporal Editing for Dynamic Hair Data
    Wu, Yijie
    Bao, Yongtang
    Qi, Yue
    2017 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV 2017), 2017, : 336 - 341
  • [24] Spatial-temporal memory based on a dynamic system
    Kotov, VB
    Politova, SV
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2003, 48 (08) : 903 - 908
  • [25] A spatial-temporal system for dynamic cadastral management
    Liu, N
    Liu, RY
    Zhu, GL
    Xie, J
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2006, 78 (04) : 373 - 381
  • [26] Modeling Dynamic Spatial-Temporal Cluster Relationships
    Portugal, Ivens
    Alencar, Paulo
    Cowan, Donald
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3590 - 3598
  • [27] Simultaneous spatial-temporal image fusion using Kalman filtered compressed sensing
    Pan, Han
    Jing, Zhongliang
    Liu, Rongli
    Jin, Bo
    OPTICAL ENGINEERING, 2012, 51 (05)
  • [28] Nonlinear spatial-temporal prediction based on optimal fusion
    Xia, Youshen
    Leung, Henry
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04): : 975 - 988
  • [29] Spatial-Temporal Feature Fusion for Human Fall Detection
    Ma, Xin
    Wang, Haibo
    Xue, Bingxia
    Li, Yibin
    COMPUTER VISION, CCCV 2015, PT I, 2015, 546 : 438 - 447
  • [30] VIDEO RETARGETING WITH NONLINEAR SPATIAL-TEMPORAL SALIENCY FUSION
    Lu, Taoran
    Yuan, Zheng
    Huang, Yu
    Wu, Dapeng
    Yu, Heather
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1801 - 1804