Spatial-Temporal Fusion for High Accuracy Depth Maps Using Dynamic MRFs

被引:79
|
作者
Zhu, Jiejie [1 ,2 ]
Wang, Liang [2 ]
Gao, Jizhou [2 ]
Yang, Ruigang [2 ]
机构
[1] Univ Cent Florida, Dept Comp Sci, Orlando, FL 32826 USA
[2] Univ Kentucky, Dept Comp Sci, Lexington, KY 40507 USA
基金
美国国家科学基金会;
关键词
Stereo; MRFs; time-of-flight sensor; data fusion; global optimization; BELIEF PROPAGATION; STEREO; FIELDS;
D O I
10.1109/TPAMI.2009.68
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time-of-flight range sensors and passive stereo have complimentary characteristics in nature. To fuse them to get high accuracy depth maps varying over time, we extend traditional spatial MRFs to dynamic MRFs with temporal coherence. This new model allows both the spatial and the temporal relationship to be propagated in local neighbors. By efficiently finding a maximum of the posterior probability using Loopy Belief Propagation, we show that our approach leads to improved accuracy and robustness of depth estimates for dynamic scenes.
引用
收藏
页码:899 / 909
页数:11
相关论文
共 50 条
  • [1] Dynamic Saliency Detection via CNN and Spatial-temporal Fusion
    Qi, Zhang
    Dong, Xu
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [2] Fusion of time-of-flight depth and stereo for high accuracy depth maps
    Zhu, Jiejie
    Wang, Liang
    Yang, Ruigang
    Davis, James
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3262 - +
  • [3] Dynamic memory network with spatial-temporal feature fusion for visual tracking
    Zhang, Hongchao
    Bao, Hua
    Lu, Yixiang
    Zhang, Dexiang
    Xun, Lina
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)
  • [4] Deep Fusion of Skeleton Spatial-Temporal and Dynamic Information for Action Recognition
    Gao, Song
    Zhang, Dingzhuo
    Tang, Zhaoming
    Wang, Hongyan
    SENSORS, 2024, 24 (23)
  • [5] Dynamic feature fusion with spatial-temporal context for robust object tracking
    Nai, Ke
    Li, Zhiyong
    Wang, Haidong
    PATTERN RECOGNITION, 2022, 130
  • [6] Video saliency detection using dynamic fusion of spatial-temporal features in complex background with disturbance
    Wu, Xiaofeng (xiaofengwu@fudan.edu.cn), 2016, Institute of Computing Technology (28):
  • [7] Spatial-temporal distribution and forecasting model of precipitation using dynamic-statistical information fusion
    Zhao, Jun
    Xu, Jinchao
    Wang, Guoqing
    Jin, Juliang
    Hu, Xiaojie
    Guo, Yan
    Li, Xuechun
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (03) : 1425 - 1447
  • [8] Temporal and Spatial Denoising of Depth Maps
    Lin, Bor-Shing
    Su, Mei-Ju
    Cheng, Po-Hsun
    Tseng, Po-Jui
    Chen, Sao-Jie
    SENSORS, 2015, 15 (08) : 18506 - 18525
  • [9] The Spatial-Temporal Channel for Information Fusion
    Li Weihua
    Fu Xiaodong
    8TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY WORKSHOPS: CIT WORKSHOPS 2008, PROCEEDINGS, 2008, : 483 - 487
  • [10] Symbol dynamic maps of spatial-temporal chaotic vibrations in a string of impact oscillators
    Moon, F. C.
    Holmes, W.
    Khoury, P.
    CHAOS, 1991, 1 (01) : 65 - 68