Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules

被引:46
作者
Chatterjee, A
Vlachos, DG [1 ]
Katsoulakis, MA
机构
[1] Univ Delaware, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA
[2] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
D O I
10.1063/1.1811601
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
While lattice kinetic Monte Carlo (KMC) methods provide insight into numerous complex physical systems governed by interatomic interactions, they are limited to relatively short length and time scales. Recently introduced coarse-grained Monte Carlo (CGMC) simulations can reach much larger length and time scales at considerably lower computational cost. In this paper we extend the CGMC methods to spatially adaptive meshes for the case of surface diffusion (canonical ensemble). We introduce a systematic methodology to derive the transition probabilities for the coarse-grained diffusion process that ensure the correct dynamics and noise, give the correct continuum mesoscopic equations, and satisfy detailed balance. Substantial savings in CPU time are demonstrated compared to microscopic KMC while retaining high accuracy. (C) 2004 American Institute of Physics.
引用
收藏
页码:11420 / 11431
页数:12
相关论文
共 31 条
[1]   THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .2. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE APPROACH [J].
BIETERMAN, M ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1982, 40 (03) :373-406
[2]  
Binder Kurt, 1986, Monte Carlo Methods in Statistical Physics, volume 7 of Topics in Current Physics, V7
[3]  
CHATTERJEE A, IN PRESS INT J MULTI
[4]  
CHATTERJEE A, IN PRESS J COMPUT PH
[5]  
CHATTERJEE AK, UNPUB
[6]   Coupled mesoscale - Continuum simulations of copper electrodeposition in a trench [J].
Drews, TO ;
Webb, EG ;
Ma, DL ;
Alameda, J ;
Braatz, RD ;
Alkire, RC .
AICHE JOURNAL, 2004, 50 (01) :226-240
[7]   The gap-tooth method in particle simulations [J].
Gear, CW ;
Li, J ;
Kevrekidis, IG .
PHYSICS LETTERS A, 2003, 316 (3-4) :190-195
[8]  
Ghez R., 1988, A Primer of Diffusion Problems, DOI 10.1002/3527602836
[9]   DIFFUSION OF ADSORBATES ON METAL-SURFACES [J].
GOMER, R .
REPORTS ON PROGRESS IN PHYSICS, 1990, 53 (07) :917-1002
[10]   Dynamics of spinodal decomposition in finite-lifetime systems: Nonlinear statistical theory based on a coarse-grained lattice-gas model [J].
Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ;
不详 ;
不详 .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (02) :1-026131