Heat flow for extrinsic biharmonic maps with small initial energy

被引:27
作者
Lamm, T [1 ]
机构
[1] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
关键词
biharmonic maps; heat flow;
D O I
10.1023/B:AGAG.0000047526.21237.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-m and N-n hooked right arrow R-k be two compact Riemannian manifolds without boundary. We consider the L-2 gradient flow for the energy F(u) := 1/2 integral(M) \Deltau\(2). If m less than or equal to 3 or if m = 4 and F(u(0)) is small, we show that the heat flow for extrinsic biharmonic maps exists for all time, and that the solution subconverges to a smooth extrinsic biharmonic map as time goes to infinity.
引用
收藏
页码:369 / 384
页数:16
相关论文
共 14 条