High-energy collective electronic excitations in layered transition-metal dichalcogenides

被引:11
|
作者
Cudazzo, Pierluigi [1 ,2 ,3 ]
Ruotsalainen, Kari O. [4 ]
Sahle, Christoph J. [4 ]
Al-Zein, Ali [5 ]
Berger, Helmuth [6 ]
Navarro-Moratalla, Efren [7 ]
Huotari, Simo [4 ]
Gatti, Matteo [3 ,8 ,9 ]
Rubio, Angel [1 ,2 ,3 ]
机构
[1] Univ Basque Country, Dept Fis Mat, Ctr Fis Mat, Nanobio Spect Grp,CSIC UPV EHU MPC, E-20018 San Sebastian, Spain
[2] Univ Basque Country, DIPC, E-20018 San Sebastian, Spain
[3] European Theoret Spect Facil, San Sebastian, Spain
[4] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland
[5] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[6] Ecole Polytech Fed Lausanne, Inst Phys Nanostruct, CH-1015 Lausanne, Switzerland
[7] Univ Valencia, Inst Ciencia Mol ICMol, Valencia, Spain
[8] Ecole Polytech, CNRS CEA DSM, Solides Irradies Lab, F-91128 Palaiseau, France
[9] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
基金
欧洲研究理事会; 芬兰科学院;
关键词
LOSS SPECTRA; DENSITY; PSEUDOPOTENTIALS; CARBON;
D O I
10.1103/PhysRevB.90.125125
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We characterize experimentally and theoretically the collective electronic excitations in two prototypical layered transition-metal dichalcogenides, NbSe2 and Cu0.2NbS2. The energy- and momentum-dependent dynamical structure factor was measured by inelastic x-ray scattering (IXS) spectroscopy and simulated by time-dependent density-functional theory. We find good agreement between theory and experiment, provided that Nb semicore states are taken into account together with crystal local-field effects. Both materials have very similar spectra, characterized by two main plasmons at 9 and 23 eV, which we show to both have pi + sigma character on the basis of a detailed analysis of the band structure. Finally, we discuss the role of the layer anisotropy in the dispersion of these plasmons.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] ELECTRONIC BAND-STRUCTURE AND BONDING IN TRANSITION-METAL LAYERED DICHALCOGENIDES BY ATOMIC ORBITAL METHODS
    BULLETT, DW
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (22): : 4501 - 4514
  • [22] Conduction mechanism and thermoelectric properties of layered transition-metal dichalcogenides
    Koyano, M
    Emoto, H
    Yamamura, Y
    Katayama, S
    Tsuji, T
    PRICM 4: FORTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, VOLS I AND II, 2001, : 2169 - 2172
  • [23] CHARGE-DENSITY WAVES IN LAYERED TRANSITION-METAL DICHALCOGENIDES
    WILSON, JA
    DISALVO, FJ
    MAHAJAN, S
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (03): : 347 - 347
  • [24] PHILLIPS IONICITY AND STRUCTURAL CLASSIFICATION OF LAYERED TRANSITION-METAL DICHALCOGENIDES
    GUPTA, VP
    SINGH, OP
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1984, 125 (01): : K1 - K5
  • [25] Nanoribbon edges of transition-metal dichalcogenides: Stability and electronic properties
    Davelou, Daphne
    Kopidakis, Georgios
    Kaxiras, Efthimios
    Remediakis, Ioannis N.
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [26] ELECTRONIC-PROPERTIES OF INTERCALATION COMPOUNDS OF THE TRANSITION-METAL DICHALCOGENIDES
    FRIEND, RH
    REVUE DE CHIMIE MINERALE, 1982, 19 (4-5): : 467 - 484
  • [27] ELECTRONIC-PROPERTIES OF INTERCALATION COMPLEXES OF THE TRANSITION-METAL DICHALCOGENIDES
    FRIEND, RH
    YOFFE, AD
    ADVANCES IN PHYSICS, 1987, 36 (01) : 1 - 94
  • [28] ELECTRONIC-STRUCTURE AND BAND THEORY OF TRANSITION-METAL DICHALCOGENIDES
    DORAN, NJ
    PHYSICA B & C, 1980, 99 (1-4): : 227 - 237
  • [29] MAGNETOPLASMAS IN TRANSITION-METAL DICHALCOGENIDES
    KOBAYASHI, M
    PHYSICAL REVIEW B, 1983, 27 (06): : 3864 - 3866
  • [30] Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides
    Ayari, Anthony
    Cobas, Enrique
    Ogundadegbe, Ololade
    Fuhrer, Michael S.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (01)