A comprehensive kinetics study of coconut shell waste pyrolysis

被引:118
作者
Ali, Imtiaz [1 ]
Bahaitham, Haitham [2 ]
Naebulharam, Raed [2 ]
机构
[1] King Abdulaziz Univ, Dept Chem & Mat Engn, Rabigh, Saudi Arabia
[2] King Abdulaziz Univ, Dept Ind Engn, Rabigh, Saudi Arabia
关键词
Coconut shell waste; Pyrolysis; Iso-conversional methods; Pseudo-components; Independent parallel reactions; ACTIVATION-ENERGY MODEL; MICRO-TUBING REACTOR; BIOMASS PYROLYSIS; LIGNOCELLULOSIC BIOMASS; THERMAL-DECOMPOSITION; THERMOGRAVIMETRIC ANALYZER; WOOD; DEGRADATION; CELLULOSE; MECHANISMS;
D O I
10.1016/j.biortech.2017.03.089
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Model-free and model-fitting methodswere compared for pyrolytic conversion of the coconut shell waste. The apparent activation energy, estimated from differential and integral iso-conversional methods, increased with the progression of pyrolytic conversion. The reaction model, f (alpha) = (1-alpha)(4) . [-ln(1-alpha)](0.53), indicate that order-based nucleation and growth mechanisms control the solid-state pyrolysis of the coconut shell waste. The active pyrolysis zone was consisted of overlapping multicomponent degradation peaks. Average activation energy of the pseudo-components estimated from the Kissinger's method were 21.9 kJ. mol (1), 106.4 kJ. mol (1) and 108.6 kJ. mol (1) for the dehydration, the degradation of pseudo-cellulose and pseudo-hemicellulose, respectively. Pseudo-lignin decomposed over a wide range of temperature with a slower conversion rate as compared to pseudo-hemicellulose and pseudo-cellulose. Average activation energy range of pseudo-lignin was estimated from the combination of model-free and model-fitting methods as 79.1-226.5 kJ. mol (1). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
[1]   Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere [J].
Aboyade, Akinwale O. ;
Hugo, Thomas J. ;
Carrier, Marion ;
Meyer, Edson L. ;
Stahl, Ralph ;
Knoetze, Johannes H. ;
Goergens, Johann F. .
THERMOCHIMICA ACTA, 2011, 517 (1-2) :81-89
[2]  
Akahira T., 1971, RES REPORT CHIBA I T, V16, P22
[3]   Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis [J].
Anca-Couce, Andres .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2016, 53 :41-79
[4]   How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme [J].
Anca-Couce, Andres ;
Berger, Anka ;
Zobel, Nico .
FUEL, 2014, 123 :230-240
[5]   Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions [J].
Asadieraghi, Masoud ;
Daud, Wan Mohd Ashri Wan .
ENERGY CONVERSION AND MANAGEMENT, 2014, 82 :71-82
[6]   Thermal deactivation studies of coconut shell pyrolysis [J].
Bandyopadhyay, S ;
Chowdhury, R ;
Biswas, GK .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1999, 77 (05) :1028-1036
[7]   Pyrolysis of pellets made with biomass and glycerol: Kinetic analysis and evolved gas analysis [J].
Bartocci, P. ;
Anca-Couce, A. ;
Slopiecka, K. ;
Nefkens, S. ;
Evic, N. ;
Retschitzegger, S. ;
Barbanera, M. ;
Buratti, C. ;
Cotana, F. ;
Bidini, G. ;
Fantozzi, F. .
BIOMASS & BIOENERGY, 2017, 97 :11-19
[8]  
Basu P., 2013, Biomass Gasification, Pyrolysis and Torrefaction, VSecond, P47, DOI [DOI 10.1016/B978-0-12-396488-5.00003-4, 10.1016/B978-0-12-396488-5.00003-4]
[9]   Pyrolysis kinetics of almond shells and olive stones considering their organic fractions [J].
Caballero, JA ;
Conesa, JA ;
Font, R ;
Marcilla, A .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1997, 42 (02) :159-175
[10]   A distributed activation energy model for the pyrolysis of lignocellulosic biomass [J].
Cai, Junmeng ;
Wu, Weixuan ;
Liu, Ronghou ;
Huber, George W. .
GREEN CHEMISTRY, 2013, 15 (05) :1331-1340