Polyvinylpyrrolidone assisted synthesized ultra-small Na4Fe3(PO4)2(P2O7) particles embedded in 1D carbon nanoribbons with enhanced room and low temperature sodium storage performance

被引:42
作者
Zhang, Jianhua [1 ]
Tang, Linbin [1 ]
Zhang, Yu [1 ]
Li, Xiaoqiang [1 ]
Xu, Qunjie [1 ]
Liu, Haimei [1 ]
Ma, Zi-Feng [2 ]
机构
[1] Shanghai Univ Elect Power, Coll Environm & Chem Engn, Shanghai Key Lab Mat Protect & Adv Mat Elect Powe, Shanghai 200090, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Na4Fe3(PO4)2(P2O7); Nanoribbon; Electrospinning; Cathode; Sodium-ion battery; ION BATTERIES; LOW-COST; ELECTRODE MATERIALS; CATHODE MATERIALS; GRAPHENE; NANOPARTICLES; NANOMATERIALS; MECHANISM;
D O I
10.1016/j.jpowsour.2021.229907
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na4Fe3(PO4)(2)P2O7 is considered to be a practical cathode material due to the wide source and low price of raw materials. However, the inherent isolation properties of the PO43- group result in low electronic conductivity and, subsequently, a low discharge capacity and poor cycling stability. Herein, polyvinylpyrrolidone assisted electrospinning method is used to synthesize Na4Fe3(PO4)(2)P2O7 nanoparticles embedded in carbon nanoribbons. The network structure of active materials wrapped in crosslinked carbon nanoribbons not only enables the ultra-fast transfer of electrons on the three-dimensional "highway" between the nanoparticles but also inhibits the aggregation of nanoparticles. These nanoribbons exhibit remarkable electrochemical performance, resulting from their exceptional electronic and ionic conductivity: high capacity of 128.6 mAh g(-1) at 0.1C (1 C = 128.9 mAh g(-1)), extra-high rate capability (61.2 mAh g(-1) at 50 C), and ultra-long cycle (72% capacity retention after 5000 cycles at 50 C). Meanwhile, Na4Fe3(PO4)(2)P2O7 nanoribbon also shows excellent low temperature properties. At 15 degrees C, the nanoribbon delivers 84.5 mAh g(-1) of discharge capacity at 0.05C and displays long-term cycle performance (80.8% capacity retention after 700 cycles at 0.5C). Therefore, the Na4Fe3(PO4)(2)P2O7 nanoribbon with excellent electrochemical performance can be considered an attractive cathode electrode for the commercialization of sodium-ion battery.
引用
收藏
页数:9
相关论文
共 56 条
[1]   Polyanionic Insertion Materials for Sodium-Ion Batteries [J].
Barpanda, Prabeer ;
Lander, Laura ;
Nishimura, Shin-ichi ;
Yamada, Atsuo .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[2]   Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries [J].
Cao, Xinxin ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (05)
[3]   Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries [J].
Cao, Yongjie ;
Xia, Xiuping ;
Liu, Yao ;
Wang, Ning ;
Zhang, Junxi ;
Zhao, Deqiang ;
Xia, Yongyao .
JOURNAL OF POWER SOURCES, 2020, 461
[4]   Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion [J].
Chen, Junsheng ;
Wei, Li ;
Mahmood, Asif ;
Pei, Zengxia ;
Zhou, Zheng ;
Chen, Xuncai ;
Chen, Yuan .
ENERGY STORAGE MATERIALS, 2020, 25 :585-612
[5]   NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density [J].
Chen, Mingzhe ;
Hua, Weibo ;
Xiao, Jin ;
Cortiel, David ;
Chen, Weihua ;
Wang, Enhui ;
Hu, Zhe ;
Gu, Qinfen ;
Wang, Xiaolin ;
Indris, Sylvio ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Carbon-Coated Na3.32Fe2.34( P2O7)2 Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries [J].
Chen, Mingzhe ;
Chen, Lingna ;
Hu, Zhe ;
Liu, Qiannan ;
Zhang, Binwei ;
Hu, Yuxiang ;
Gu, Qinfen ;
Wang, Jian-Li ;
Wang, Lian-Zhou ;
Guo, Xiaodong ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
ADVANCED MATERIALS, 2017, 29 (21)
[7]   Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability [J].
Chen, Yu ;
Song, Bohang ;
Lu, Li ;
Xue, Junmin .
NANOSCALE, 2013, 5 (15) :6797-6803
[8]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[9]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[10]   Sodium-Ion Batteries: From Academic Research to Practical Commercialization [J].
Deng, Jianqiu ;
Luo, Wen-Bin ;
Chou, Shu-Lei ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (04)