PGRA: Projected graph relation-feature attention network for heterogeneous information network embedding

被引:17
作者
Chairatanakul, Nuttapong [1 ,3 ]
Liu, Xin [2 ,3 ]
Murata, Tsuyoshi [1 ,3 ]
机构
[1] Tokyo Inst Technol, Dept Comp Sci, Sch Comp, Tokyo, Japan
[2] Natl Inst Adv Ind Sci & Technol, AIRC, Tokyo, Japan
[3] AIST Tokyo Tech Real World Big Data Computat Open, Tokyo, Japan
关键词
Heterogeneous information network; Graph neural network; Graph embedding; Attention;
D O I
10.1016/j.ins.2021.04.070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph neural networks (GNNs) have achieved superior performance and gained significant interest in various domains. However, most of the existing GNNs are considered for homogeneous graphs, whereas real-world systems are usually modeled as heterogeneous graphs or heterogeneous information networks (HINs). Designing a GNN to fully capture the rich semantic information of HINs is significantly challenging owing to the heterogeneity and incompatibility of relations in HINs. To address these issues while utilizing the power of GNNs, we propose a novel unsupervised embedding approach, named Projected Graph Relation-Feature Attention Network (PGRA). PGRA is based on three mechanisms: 1) specific-relation projection that projects the representation vector of each node to a relation-specific space, 2) aggregation with a relation-feature attention network that learns salient neighbors in the aggregation by considering the features of the nodes and compatibility between the connected and target relations, 3) an elegantly designed loss function that captures both the first-and second-order proximities between nodes. The results of extensive experiments on seven real-world datasets illustrate that PGRA outperforms the state-of-the-art methods by a large margin. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:769 / 794
页数:26
相关论文
共 50 条
  • [31] Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph
    Jia H.-T.
    Zhang B.-Y.
    Huang C.
    Li W.-H.
    Xu W.-B.
    Bi Y.-F.
    Ren L.
    Journal of Electronic Science and Technology, 2023, 21 (02)
  • [32] Graph relation embedding network for click-through rate prediction
    Wu, Yixuan
    Hu, Youpeng
    Xiong, Xin
    Li, Xunkai
    Guo, Ronghui
    Deng, Shuiguang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (09) : 2543 - 2564
  • [33] Graph relation embedding network for click-through rate prediction
    Yixuan Wu
    Youpeng Hu
    Xin Xiong
    Xunkai Li
    Ronghui Guo
    Shuiguang Deng
    Knowledge and Information Systems, 2022, 64 : 2543 - 2564
  • [34] MAHE-IM: Multiple Aggregation of Heterogeneous Relation Embedding for Influence Maximization on Heterogeneous Information Network
    Li, Ying
    Li, Linlin
    Liu, Yijun
    Li, Qianqian
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 202
  • [35] Feature Fusion Graph Attention Network for Link Prediction
    Zhang, Xuan
    Chen, WangQun
    Lin, FuQiang
    Chen, XinYi
    Liu, Bo
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [36] Heterogeneous information network-based interest composition with graph neural network for recommendation
    Yan, Dengcheng
    Xie, Wenxin
    Zhang, Yiwen
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11199 - 11213
  • [37] Heterogeneous information network-based interest composition with graph neural network for recommendation
    Dengcheng Yan
    Wenxin Xie
    Yiwen Zhang
    Applied Intelligence, 2022, 52 : 11199 - 11213
  • [38] An interlayer feature fusion-based heterogeneous graph neural network
    Ke Feng
    Guozheng Rao
    Li Zhang
    Qing Cong
    Applied Intelligence, 2023, 53 : 25626 - 25639
  • [39] Fusing heterogeneous information for multi-modal attributed network embedding
    Yang, Jieyi
    Zhu, Feng
    Dong, Yihong
    Qian, Jiangbo
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22328 - 22347
  • [40] Finding Communities by Decomposing and Embedding Heterogeneous Information Network
    Kou, Yue
    Shen, De-Rong
    Li, Dong
    Nie, Tie-Zheng
    Yu, Ge
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (02) : 320 - 337