Quasi-Monte Carlo integration in unanchored Sobolev spaces

被引:0
作者
Fialova, Jana [1 ]
机构
[1] Slovak Acad Sci, Math Inst, SK-81473 Bratislava, Slovakia
关键词
QMC integration; squared worst-case QMC error; Hilbert space with reproducing kernel; unanchored Sobolev space; centered regular lattice; tent function;
D O I
10.2478/s12175-014-0264-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find a concrete sequence of N points, for which the squared worst-case quasi-Monte Carlo error in the Hilbert space of continuous functions defined on [0, 1] with square integrable second derivative is smaller than for the centered regular lattice point set.
引用
收藏
页码:1135 / 1144
页数:10
相关论文
共 5 条
[1]   The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets [J].
Cristea, Ligia L. ;
Dick, Josef ;
Leobacher, Gunther ;
Pillichshammer, Friedrich .
NUMERISCHE MATHEMATIK, 2007, 105 (03) :413-455
[2]  
Dick J., 2010, Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration
[3]  
Hickernell FJ, 2002, MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, P274
[4]   When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? [J].
Sloan, IH ;
Wozniakowski, H .
JOURNAL OF COMPLEXITY, 1998, 14 (01) :1-33
[5]  
Strauch O., 2005, Distribution of Sequences: A Sampler