Towards compatible triangulations

被引:8
作者
Aichholzer, O
Aurenhammer, F
Hurtado, F
Krasser, H
机构
[1] Graz Univ Technol, Inst Theoret Comp Sci, A-8010 Graz, Austria
[2] Univ Politecn Catalunya, Dept Matemat Aplicada 2, Barcelona, Spain
关键词
computational geometry; triangulation; strong isomorphism; Steiner points;
D O I
10.1016/S0304-3975(02)00428-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We state the following conjecture: any two. planar n-point sets that agree on the number of convex hull points can be triangulated in a compatible manner, i.e., such that the resulting two triangulations are topologically equivalent. We first describe a class of point sets which can be triangulated compatibly with any other set (that satisfies the obvious size and shape restrictions). The conjecture is then proved true for point sets with at most three interior points. Finally, we demonstrate that adding a small number of extraneous points (the number of interior points minus three) always allows for compatible triangulations. The linear bound extends to point sets of arbitrary size and shape. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 15 条
[1]  
Aichholzer O., 2001, P 17 ANN ACM S COMP, P11
[2]  
AICHHOLZER O, 2001, P 13 CAN C COMP GEOM, P17
[3]   ON COMPATIBLE TRIANGULATIONS OF SIMPLE POLYGONS [J].
ARONOV, B ;
SEIDEL, R ;
SOUVAINE, D .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1993, 3 (01) :27-35
[4]   Feature-based image metamorphosis [J].
Beier, Thaddeus ;
Neely, Shawn .
Computer Graphics (ACM), 1992, 26 (02) :35-42
[5]  
BERN M, 2000, COMMUNICATION
[6]   How to morph tilings injectively [J].
Floater, MS ;
Gotsman, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 101 (1-2) :117-129
[7]   MULTIDIMENSIONAL SORTING [J].
GOODMAN, JE ;
POLLACK, R .
SIAM JOURNAL ON COMPUTING, 1983, 12 (03) :484-507
[8]  
Graf T, 1998, LECT NOTES COMPUT SC, V1443, P130, DOI 10.1007/BFb0055047
[9]   Morphing simple polygons [J].
Guibas L. ;
Hershberger J. ;
Suri S. .
Discrete & Computational Geometry, 2000, 24 (1) :1-34
[10]   Isomorphic triangulations with small number of Steiner points [J].
Kranakis, E ;
Urrutia, J .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1999, 9 (02) :171-180