We develop a goodness-of-fit measure with desirable properties for use in the hierarchical logistic regression setting. The statistic is an unweighted sum of squares (USS) of the kernel smoothed model residuals. We develop expressions for the moments of this statistic and create a standardized statistic with hypothesized asymptotic standard normal distribution under the null hypothesis that the model is correctly specified. Extensive simulation studies demonstrate satisfactory adherence to Type I error rates of the Kernel smoothed USS statistic in a variety of likely data settings. Finally, we discuss issues of bandwidth selection for using our proposed statistic in practice and illustrate its use in an example. (c) 2006 Elsevier B.V. All rights reserved.
机构:
Univ Halle Wittenberg, Inst Med Epidemiol Biostat & Informat, D-06097 Halle An Der Saale, GermanyUniv Halle Wittenberg, Inst Med Epidemiol Biostat & Informat, D-06097 Halle An Der Saale, Germany
机构:
Sichuan Normal Univ, Sch Math, Chengdu, Sichuan, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab, Chengdu, Sichuan, Peoples R ChinaSichuan Normal Univ, Sch Math, Chengdu, Sichuan, Peoples R China
Qiu, Yuke
Liu, Liu
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math, Chengdu, Sichuan, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab, Chengdu, Sichuan, Peoples R ChinaSichuan Normal Univ, Sch Math, Chengdu, Sichuan, Peoples R China
Liu, Liu
Lai, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Management, Xian, Shaanxi, Peoples R ChinaSichuan Normal Univ, Sch Math, Chengdu, Sichuan, Peoples R China
Lai, Xin
Qiu, Yuwen
论文数: 0引用数: 0
h-index: 0
机构:
Southern Med Univ, Dept Gynecol & Obstet, Southern Hosp, Guangzhou, Guangdong, Peoples R ChinaSichuan Normal Univ, Sch Math, Chengdu, Sichuan, Peoples R China