Catalytic layer-membrane electrode assembly methods for optimum triple phase boundaries and fuel cell performances

被引:69
作者
Fouzai, Imen [1 ,2 ,3 ]
Gentil, Solene [1 ]
Bassetto, Victor Costa [1 ]
Silva, Wanderson Oliveira [1 ]
Maher, Raddaoui [2 ]
Girault, Hubert H. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Electrochim Phys & Analyt, Rue Ind 17,Case Postale 440, CH-1951 Sion, Switzerland
[2] Fac Sci Gafsa, Unite Rech Phys Math & Informat, Cite Sidi Ahmed Zarroug 2112, Gafsa, Tunisia
[3] Inst Natl Sci Appl & Technol, BP 676, Tunis 1080, Tunisia
关键词
Electrodes;
D O I
10.1039/d0ta07470e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton-exchange membrane fuel cell (PEMFC), designed mainly for mobility applications, converts chemical energy to electrical energy. The formation of electrodes for PEMFC is a delicate balance of transport media. The diffusion of gas, electrons, and protons, known as a triple phase boundary (TPB), plays a key role in the fuel cell operation and performance. Currently, in order to overcome the performance limitations in a practical PEMFC operation, R&D strategies have been focused on replacing Pt with non-noble based metal catalysts or by decreasing the overall Pt loading to below 0.1 mg(Pt) cm(-2) by 2030 (DOE targets), as well as the optimization of the TPB structure. Furthermore, we present here a critical overview from different deposition techniques used in the fabrication of MEA and the effects on the TPB formation. In particular, we have discussed print-light synthesis as a new emerging technology for the catalyst deposition and nanostructure formation onto a broad range of supports.
引用
收藏
页码:11096 / 11123
页数:28
相关论文
共 175 条
[1]   Preparation of Pt/C electrode with double catalyst layers by electrophoresis deposition method for PEMFC [J].
Adilbish, Ganpurev ;
Lee, Jun-Woo ;
Jang, Yong-Seok ;
Lee, Hong-Gi ;
Yu, Yeon-Tae .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (07) :3381-3386
[2]   Sputter deposition of Pt nanoclusters and thin films on PEM fuel cell electrodes [J].
Alvisi, M ;
Galtieri, G ;
Giorgi, L ;
Giorgi, R ;
Serra, E ;
Signore, MA .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (5-6) :1325-1329
[3]  
[Anonymous], ENERGY TECHNOLOGY PE
[4]   Carbon supports for low-temperature fuel cell catalysts [J].
Antolini, Ermete .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 88 (1-2) :1-24
[5]   In-plane 2-D patterning of microporous layer by inkjet printing for water management of polymer electrolyte fuel cell [J].
Bae, Insung ;
Kim, Bongsoo ;
Kim, Young ;
Kim, Hyuk ;
Oh, Keun-Hwan .
RENEWABLE ENERGY, 2020, 146 :960-967
[6]   Large-scale fabrication of flexible solid-state reference electrodes [J].
Bananezhad, Asma ;
Jovic, Milica ;
Villalobos, Luis Francisco ;
Agrawal, Kumar Varoon ;
Ganjali, Mohammad Reza ;
Girault, Hubert H. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 847
[7]   Print-Light-Synthesis of Ni and NiFe-Nanoscale Catalysts for Oxygen Evolution [J].
Bassetto, Victor Costa ;
Mensi, Mounir ;
Oveisi, Emad ;
Girault, Hubert H. ;
Lesch, Andreas .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) :6322-6331
[8]   Rapid inkjet printing of high catalytic activity Co3O4/N-rGO layers for oxygen reduction reaction [J].
Bassetto, Victor Costa ;
Xiao, Jingjing ;
Oveisi, Emad ;
Amstutz, Veronique ;
Liu, Baohong ;
Girault, Hubert H. ;
Lesch, Andreas .
APPLIED CATALYSIS A-GENERAL, 2018, 563 :9-17
[9]   Size dependence investigations of hot electron cooling dynamics in metal/adsorbates nanoparticles [J].
Bauer, C ;
Abid, JP ;
Girault, HH .
CHEMICAL PHYSICS, 2005, 319 (1-3) :409-421
[10]   Spray deposition of Nafion membranes: Electrode-supported fuel cells [J].
Bayer, Thomas ;
Hung Cuong Pham ;
Sasaki, Kazunari ;
Lyth, Stephen Matthew .
JOURNAL OF POWER SOURCES, 2016, 327 :319-326