Modeling and Forecasting the Volatility of NIFTY 50 Using GARCH and RNN Models

被引:14
|
作者
Mahajan, Vanshu [1 ]
Thakan, Sunil [1 ]
Malik, Aashish [2 ]
机构
[1] Rajiv Gandhi Inst Petr Technol, Dept Chem Engn & Biochem Engn, Jais 229304, India
[2] Rajiv Gandhi Inst Petr Technol, Dept Petr Engn & Geoengn, Jais 229304, India
关键词
forecasting; Indian stock market; India VIX; NIFTY; 50; leverage effects; GARCH models; LSTM model; STOCK-MARKET VOLATILITY; INDEX; RETURNS; LSTM;
D O I
10.3390/economies10050102
中图分类号
F [经济];
学科分类号
02 ;
摘要
The stock market is constantly shifting and full of unknowns. In India in 2000, technological advancements led to significant growth in the Indian stock market, introducing online share trading via the internet and computers. Hence, it has become essential to manage risk in the Indian stock market, and volatility plays a critical part in assessing the risks of different stock market elements such as portfolio risk management, derivative pricing, and hedging techniques. As a result, several scholars have lately been interested in forecasting stock market volatility. This study analyzed India VIX (NIFTY 50 volatility index) to identify the behavior of the Indian stock market in terms of volatility and then evaluated the forecasting ability of GARCH- and RNN-based LSTM models using India VIX out of sample data. The results indicated that the NIFTY 50 index's volatility is asymmetric, and leverage effects are evident in the results of the EGARCH (1, 1) model. Asymmetric GARCH models such as EGARCH (1, 1) and TARCH (1, 1) showed slightly better forecasting accuracy than symmetric GARCH models like GARCH (1, 1). The results also showed that overall GARCH models are slightly better than RNN-based LSTM models in forecasting the volatility of the NIFTY 50 index. Both types of models (GARCH models and RNN based LSTM models) fared equally well in predicting the direction of the NIFTY 50 index volatility. In contrast, GARCH models outperformed the LSTM model in predicting the value of volatility.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] MODELING INDIAN BANK NIfTY VOLATILITY USING UNIVARIATE GARCH mODELS
    Nikhil, M. N.
    Chakraborty, Suman
    Lithin, B. M.
    Ledwani, Sanket
    Satyakam
    BANKS AND BANK SYSTEMS, 2023, 18 (01) : 127 - 138
  • [2] Forecasting volatility of crude oil futures using a GARCH-RNN hybrid approach
    Verma, Sauraj
    INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT, 2021, 28 (02): : 130 - 142
  • [3] Estimation of Price Volatility of Nifty 50 Index using ADF and GARCH (1, 1)
    Kumar, Naveen P.
    Minithra, R.
    INDIAN JOURNAL OF ECONOMICS AND DEVELOPMENT, 2021, 17 (02) : 480 - 485
  • [4] Forecasting volatility by using wavelet transform, ARIMA and GARCH models
    Rubio, Lihki
    Pinedo, Adriana Palacio
    Castano, Adriana Mejia
    Ramos, Filipe
    EURASIAN ECONOMIC REVIEW, 2023, 13 (3-4) : 803 - 830
  • [5] Bitcoin return volatility forecasting using nonparametric GARCH models
    Mestiri, Sami
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024, 11 (04)
  • [6] ESG Volatility Prediction Using GARCH and LSTM Models
    Mishra, Akshay Kumar
    Kumar, Rahul
    Bal, Debi Prasad
    FINANCIAL INTERNET QUARTERLY, 2023, 19 (04) : 97 - 114
  • [7] Modelling and forecasting the stock market volatility of SSE Composite Index using GARCH models
    Lin, Zhe
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 : 960 - 972
  • [8] Volatility forecasting using deep recurrent neural networks as GARCH models
    Di-Giorgi, Gustavo
    Salas, Rodrigo
    Avaria, Rodrigo
    Ubal, Cristian
    Rosas, Harvey
    Torres, Romina
    COMPUTATIONAL STATISTICS, 2023,
  • [9] Forecasting Bitcoin Volatility Using Hybrid GARCH Models with Machine Learning
    Zahid, Mamoona
    Iqbal, Farhat
    Koutmos, Dimitrios
    RISKS, 2022, 10 (12)
  • [10] Forecasting carbon futures volatility using GARCH models with energy volatilities
    Byun, Suk Joon
    Cho, Hangjun
    ENERGY ECONOMICS, 2013, 40 : 207 - 221