Kinematics and hydrodynamics of spinning particles

被引:55
|
作者
Recami, E [1 ]
Salesi, G
机构
[1] Univ Statale Bergamo, Fac Ingn, I-24044 Dalmine, BG, Italy
[2] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[3] Univ Estadual Campinas, DMO, FEEC, Campinas, Brazil
[4] Univ Estadual Campinas, CCS, Campinas, Brazil
[5] Univ Catania, Dipartmento Fis, I-95129 Catania, Italy
[6] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy
来源
PHYSICAL REVIEW A | 1998年 / 57卷 / 01期
关键词
D O I
10.1103/PhysRevA.57.98
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the first part (Secs. I and II) of this paper, starting from the Pauli current, we obtain the decomposition of the nonrelativistic field velocity into two orthogonal parts: (i) the "classical" part, that is, the velocity w=p/m in the center of mass (c.m.), and (ii) the "quantum'' part, that is, the velocity V of the motion of the c.m. frame (namely, the internal "spin motion" or Zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic-energy term of the nonrelativistic classical (i.e., Newtonian) Lagrangian, we straightforwardly get the appearance of the so-called quantum potential associated, as it is known, with the Madelung fluid. This result provides further evidence of the possibility that the quantum behavior of microsystems is a direct consequence of the fundamental existence of spin. In the second part (Secs. III and IV), we fix our attention on the total velocity v=w+V, now necessarily considering relativistic (classical) physics. We show that the proper time entering the definition of the four-velocity upsilon(mu) for spinning particles has to be the proper time tau of the c.m. frame. Inserting the correct Lorentz factor into the definition of upsilon(mu) leads to completely different kinematical properties for upsilon(2). The important constraint p (mu)upsilon(mu)=m, identically true for scalar particles but just assumed a priori in all previous spinning-particle theories, is herein derived in a self-consistent way. [S1050-2947(98)03701-9].
引用
收藏
页码:98 / 105
页数:8
相关论文
共 50 条
  • [21] APPLICATION TO ELLIPTIC GEOMETRY TO KINEMATICS OF SPINNING TOPS
    SCHMIEDER, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (12): : 628 - 629
  • [22] On the Kinematics of the Centre of Charge of an Elementary Spinning Particle
    Rivas, Martin
    SPIN PHYSICS, 2009, 1149 : 253 - 256
  • [23] Charged spinning black holes as accelerators of spinning particles
    Zhang, Yu-Peng
    Gu, Bao-Min
    Wei, Shao-Wen
    Yang, Jie
    Liu, Yu-Xiao
    PHYSICAL REVIEW D, 2016, 94 (12)
  • [24] Hydrodynamics of granular particles on a line
    Baldassarri, Andrea
    Puglisi, Andrea
    Prados, Antonio
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [25] QUANTUM HYDRODYNAMICS OF UNPOINT PARTICLES
    LAPTUKHOV, AI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1991, 34 (09): : 26 - 29
  • [26] DDFT for Brownian particles and hydrodynamics
    Rauscher, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)
  • [27] HYDRODYNAMICS OF SEDIMENTATION OF MULTISIZED PARTICLES
    SHIH, YT
    GIDASPOW, D
    WASAN, DT
    POWDER TECHNOLOGY, 1987, 50 (03) : 201 - 215
  • [28] Torus quantization for spinning particles
    Keppeler, S
    PHYSICAL REVIEW LETTERS, 2002, 89 (21) : 210405 - 210405
  • [29] Spinning particles in general relativity
    Cianfrani, F.
    Montani, G.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2007, 122 (02): : 173 - 178
  • [30] Classical anomalies for spinning particles
    Nucl Phys Sect B, 1-2 (485):