Functions for diverse metabolic activities in heterochromatin

被引:16
作者
Su, Xue Bessie [1 ,3 ]
Pillus, Lorraine [1 ,2 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, Mol Biol Sect, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA
[3] Univ Edinburgh, Sch Biol Sci, Wellcome Trust Ctr Cell Biol, Edinburgh EH9 3BF, Midlothian, Scotland
关键词
yeast chromatin; metabolism; SIR complex; epigenetic silencing; glutamate dehydrogenase; SACCHAROMYCES-CEREVISIAE; GLUTAMATE-DEHYDROGENASE; HISTONE ACETYLATION; MOONLIGHTING PROTEINS; HOMOCITRATE SYNTHASE; ARGININE METABOLISM; GENE DELETION; CHROMATIN; SIR2; MUTATIONS;
D O I
10.1073/pnas.1518707113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1's functions in telomeric silencing and H3 clipping. Genetic modulation of a-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes.
引用
收藏
页码:E1526 / E1535
页数:10
相关论文
共 89 条
[41]   Global analysis of protein localization in budding yeast [J].
Huh, WK ;
Falvo, JV ;
Gerke, LC ;
Carroll, AS ;
Howson, RW ;
Weissman, JS ;
O'Shea, EK .
NATURE, 2003, 425 (6959) :686-691
[42]   Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase [J].
Imai, S ;
Armstrong, CM ;
Kaeberlein, M ;
Guarente, L .
NATURE, 2000, 403 (6771) :795-800
[43]   The genetic basis of congenital hyperinsulinism [J].
James, C. ;
Kapoor, R. R. ;
Ismail, D. ;
Hussain, K. .
JOURNAL OF MEDICAL GENETICS, 2009, 46 (05) :289-299
[44]   Metabolism and Epigenetics [J].
Janke, Ryan ;
Dodson, Anne E. ;
Rine, Jasper .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 31, 2015, 31 :473-496
[45]   Moonlighting proteins-an update [J].
Jeffery, Constance J. .
MOLECULAR BIOSYSTEMS, 2009, 5 (04) :345-350
[46]   A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae [J].
Jones, Grace Marie ;
Stalker, Jim ;
Humphray, Sean ;
West, Anthony ;
Cox, Tony ;
Rogers, Jane ;
Dunham, Ian ;
Prelich, Gregory .
NATURE METHODS, 2008, 5 (03) :239-241
[47]   Influence of Metabolism on Epigenetics and Disease [J].
Kaelin, William G., Jr. ;
McKnight, Steven L. .
CELL, 2013, 153 (01) :56-69
[48]   Ultraviolet radiation sensitivity and reduction of telomeric silencing Saccharomyces cerevisiae cells lacking chromatin assembly factor-I [J].
Kaufman, PD ;
Kobayashi, R ;
Stillman, B .
GENES & DEVELOPMENT, 1997, 11 (03) :345-357
[49]   Enzyme Promiscuity: A Mechanistic and Evolutionary Perspective [J].
Khersonsky, Olga ;
Tawfik, Dan S. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 79, 2010, 79 :471-505
[50]   Accelerated nuclei preparation and methods for analysis of histone modifications in yeast [J].
Kizer, Kelby O. ;
Xiao, Tiaojiang ;
Strahl, Brian D. .
METHODS, 2006, 40 (04) :296-302