Redirecting meiotic DNA break hotspot determinant proteins alters localized spatial control of DNA break formation and repair

被引:4
作者
Hyppa, Randy W. [1 ]
Cho, Joshua D. [1 ,2 ]
Nambiar, Mridula [1 ,3 ]
Smith, Gerald R. [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
[2] Columbia Univ, Dept Pathol, New York, NY 10032 USA
[3] Indian Inst Sci Educ & Res, Dept Biol, Pune 411008, Maharashtra, India
关键词
DOUBLE-STRAND BREAKS; RECOMBINATION HOT-SPOT; LINEAR ELEMENTS; FISSION YEAST; TRANSCRIPTION FACTORS; SEQUENCE MOTIFS; INITIATION; CHROMOSOME; SITES; ORGANIZATION;
D O I
10.1093/nar/gkab1253
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During meiosis, DNA double-strand breaks (DSBs) are formed at high frequency at special chromosomal sites, called DSB hotspots, to generate crossovers that aid proper chromosome segregation. Multiple chromosomal features affect hotspot formation. In the fission yeast S. pombe the linear element proteins Rec25, Rec27 and Mug20 are hotspot determinants - they bind hotspots with high specificity and are necessary for nearly all DSBs at hotspots. To assess whether they are also sufficient for hotspot determination, we localized each linear element protein to a novel chromosomal site (ade6 with lacO substitutions) by fusion to the Escherichia coli LacI repressor. The Mug20-LacI plus lacO combination, but not the two separate lac elements, produced a strong ade6 DSB hotspot, comparable to strong endogenous DSB hotspots. This hotspot had unexpectedly low ade6 recombinant frequency and negligible DSB hotspot competition, although like endogenous hotspots it manifested DSB interference. We infer that linear element proteins must be properly placed by endogenous functions to impose hotspot competition and proper partner choice for DSB repair. Our results support and expand our previously proposed DSB hotspot-clustering model for local control of meiotic recombination.
引用
收藏
页码:899 / 914
页数:16
相关论文
共 83 条
[1]   The COMPASS Subunit Spp1 Links Histone Methylation to Initiation of Meiotic Recombination [J].
Acquaviva, Laurent ;
Szekvoelgyi, Lorant ;
Dichtl, Bernhard ;
Dichtl, Beatriz Solange ;
Saint Andre, Christophe de La Roche ;
Nicolas, Alain ;
Geli, Vincent .
SCIENCE, 2013, 339 (6116) :215-218
[2]   Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development [J].
Alavattam, Kris G. ;
Maezawa, So ;
Sakashita, Akihiko ;
Khoury, Haia ;
Barski, Artem ;
Kaplan, Noam ;
Namekawa, Satoshi H. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2019, 26 (03) :175-+
[3]   Reduced Crossover Interference and Increased ZMM-Independent Recombination in the Absence of Tel1/ATM [J].
Anderson, Carol M. ;
Oke, Ashwini ;
Yam, Phoebe ;
Zhuge, Tangna ;
Fung, Jennifer C. .
PLOS GENETICS, 2015, 11 (08)
[4]  
Bähler J, 1998, YEAST, V14, P943, DOI 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO
[5]  
2-Y
[6]   UNUSUAL NUCLEAR-STRUCTURES IN MEIOTIC PROPHASE OF FISSION YEAST - A CYTOLOGICAL ANALYSIS [J].
BAHLER, J ;
WYLER, T ;
LOIDL, J ;
KOHLI, J .
JOURNAL OF CELL BIOLOGY, 1993, 121 (02) :241-256
[7]   Prelude to a Division [J].
Bhalla, Needhi ;
Dernburg, Abby F. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2008, 24 :397-424
[8]   Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes [J].
Bhattacharyya, Tanmoy ;
Walker, Michael ;
Powers, Natalie R. ;
Brunton, Catherine ;
Fine, Alexander D. ;
Petkov, Petko M. ;
Handel, Mary Ann .
CURRENT BIOLOGY, 2019, 29 (06) :1002-+
[9]   Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites [J].
Borde, Valerie ;
Robine, Nicolas ;
Lin, Waka ;
Bonfils, Sandrine ;
Geli, Vincent ;
Nicolas, Alain .
EMBO JOURNAL, 2009, 28 (02) :99-111
[10]   Double strand breaks at the HIS2 recombination hot spot in Saccharomyces cerevisiae [J].
Bullard, SA ;
Kim, S ;
Galbraith, AM ;
Malone, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13054-13059