Random-Walk Drift-Diffusion Charge-Collection Model For Reverse-Biased Junctions Embedded in Circuits

被引:12
作者
Glorieux, M. [1 ,2 ,3 ]
Autran, J. L. [2 ,3 ,4 ,5 ]
Munteanu, D. [2 ,3 ,4 ,5 ]
Clerc, S. [1 ,4 ,5 ]
Gasiot, G. [1 ,4 ,5 ]
Roche, P. [1 ,4 ,5 ]
机构
[1] STMicroelectronics, F-38926 Crolles, France
[2] Aix Marseille Univ, F-13397 Marseille, France
[3] CNRS, UMR7334, IM2NP, F-13397 Marseille, France
[4] Radiat Effects & Elect Reliabil REER Lab, F-38926 Crolles, France
[5] Radiat Effects & Elect Reliabil REER Lab, F-13397 Marseille, France
关键词
Charge collection; charge sharing; circuit modeling; radiation transport modeling; single-event modeling; single-event upset; CMOS; SIMULATION; TRANSPORT; SRAMS;
D O I
10.1109/TNS.2014.2362073
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new computational model for charge transport based on parallelized random-walk drift-diffusion is proposed. This approach models the radiation-induced charge carriers as charge packets in a 3-D structure and the transport modeling are based on simple physical equations without any fitting parameter. This model has been dynamically coupled with a SPICE circuit simulator to take into account temporal variations of the electric fields in the charge collection process. Thus, the circuit electrical response modulates the charge collection efficiency. Three simulation cases have been explored and compared with TCAD simulations or radiation experiments in 65 nm technology to validate the accuracy of the proposed approach. These simulations demonstrate the capability of the proposed model to accurately estimate the soft error rate of complex structures, such as flip-flops over a large range of ionizing particle linear energy transfer. The proposed simulation methodology is also able to take into account charge-sharing phenomenon, and this point is highlighted by a specific investigation on the considered flip-flop.
引用
收藏
页码:3527 / 3534
页数:8
相关论文
共 18 条
[1]  
[Anonymous], JESD89A
[2]   Collected Charge Analysis for a New Transient Model by TCAD Simulation in 90 nm Technology [J].
Artola, Laurent ;
Hubert, G. ;
Duzellier, S. ;
Bezerra, Francoise .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (04) :1869-1875
[3]  
Autran J. L., 2010, 2010 IEEE International Conference on IC Design & Technology (ICICDT), P67, DOI 10.1109/ICICDT.2010.5510293
[4]   Innovative simulations of heavy ion cross sections in 130 nm CMOS SRAM [J].
Correas, Vincent ;
Saigne, F. ;
Sagnes, B. ;
Boch, J. ;
Gasiot, G. ;
Giot, D. ;
Roche, P. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (06) :2413-2418
[6]   Single Event Transients in Digital CMOS-A Review [J].
Ferlet-Cavrois, Veronique ;
Massengill, Lloyd W. ;
Gouker, Pascale .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (03) :1767-1790
[7]   Cosmic-ray soft error rate characterization of a standard 0.6-μm CMOS process [J].
Hazucha, P ;
Svensson, C ;
Wender, SA .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (10) :1422-1429
[8]   A Bias-Dependent Single-Event Compact Model Implemented Into BSIM4 and a 90 nm CMOS Process Design Kit [J].
Kauppila, Jeffrey S. ;
Sternberg, Andrew L. ;
Alles, Michael L. ;
Francis, A. Matt ;
Holmes, Jim ;
Amusan, Oluwole A. ;
Massengill, Lloyd W. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (06) :3152-3157
[9]   High-injection carrier dynamics generated by MeV heavy ions impacting high-speed photodetectors [J].
Laird, JS ;
Hirao, T ;
Onoda, S ;
Itoh, H .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (01)
[10]   Single-Event Performance and Layout Optimization of Flip-Flops in a 28-nm Bulk Technology [J].
Lilja, K. ;
Bounasser, M. ;
Wen, S. -J. ;
Wong, R. ;
Holst, J. ;
Gaspard, N. ;
Jagannathan, S. ;
Loveless, D. ;
Bhuva, B. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (04) :2782-2788