Nanoparticle-Nanorod Core-Shell LiNi0.5Mn1.5O4 Spinel Cathodes with High Energy Density for Li-Ion Batteries

被引:51
|
作者
Jo, Minki [1 ,2 ]
Lee, Young-Ki [3 ]
Kim, Kwang Man [3 ]
Cho, Jaephil [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Energy Engn, Ulsan 689798, South Korea
[2] Ulsan Natl Inst Sci & Technol, Converging Res Ctr Innovat Battery Technol, Ulsan 689798, South Korea
[3] Elect & Telecommun Res Inst, Res Team Nanoconvergence Sensor, Taejon 305700, South Korea
关键词
cathodes; electrochemistry; lithium compounds; nanoparticles; nanorods; nickel compounds; secondary cells; sol-gel processing; LITHIUM; LIMN2O4; PERFORMANCE;
D O I
10.1149/1.3428706
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanoparticle-nanorod core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries were prepared using a hollow MnO2 precursor. The core and shell parts consisted of nanoparticle (similar to 100 nm) and nanorod assemblies, respectively. The core-shell cathode exhibited greatly improved discharge capacities compared to nanoparticles prepared by a sol-gel method. The core-shell spinel exhibited discharge capacities of 121 and 100 mAh/g at 0.1C and 7C rates, respectively, whereas a spinel cathode prepared by a sol-gel method exhibited 99 and 80 mAh/g at those respective rates. In addition, the core-shell spinels demonstrated an energy density value that was enhanced by 52% to 1.6 Wh/cm(3) compared to an analogous sample prepared by a sol-gel method, which showed a value of 0.9 Wh/cm(3). (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3428706] All rights reserved.
引用
收藏
页码:A841 / A845
页数:5
相关论文
共 50 条
  • [21] Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries
    Kim, Jung-Hyun
    Pieczonka, Nicholas P. W.
    Li, Zicheng
    Wu, Yan
    Harris, Stephen
    Powell, Bob R.
    ELECTROCHIMICA ACTA, 2013, 90 : 556 - 562
  • [22] Enhancing Orbital Interaction in Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage and High-Rate Li-Ion Batteries
    Fu, Tianji
    Li, Yujie
    Yao, Ziqing
    Guo, Tongsen
    Liu, Shuangke
    Chen, Zhongxue
    Zheng, Chunman
    Sun, Weiwei
    SMALL, 2024, 20 (40)
  • [23] Enhancing Orbital Interaction in Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage and High-Rate Li-Ion Batteries
    Fu, Tianji
    Li, Yujie
    Yao, Ziqing
    Guo, Tongsen
    Liu, Shuangke
    Chen, Zhongxue
    Zheng, Chunman
    Sun, Weiwei
    SMALL, 2024,
  • [24] A high energy Li-ion battery based on nanosized LiNi0.5Mn1.5O4 cathode material
    Arrebola, Jose C.
    Caballero, Alvaro
    Hernan, Lourdes
    Morales, Julian
    JOURNAL OF POWER SOURCES, 2008, 183 (01) : 310 - 315
  • [25] Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries
    Wang, Fei
    Suo, Liumin
    Liang, Yujia
    Yang, Chongyin
    Han, Fudong
    Gao, Tao
    Sun, Wei
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2017, 7 (08)
  • [26] AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries
    Jiangang Li
    Yayuan Zhang
    Jianjun Li
    Li Wang
    Xiangming He
    Jian Gao
    Ionics, 2011, 17 : 671 - 675
  • [27] Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries
    Bini, Marcella
    Boni, Pietro
    Mustarelli, Piercarlo
    Quinzeni, Irene
    Bruni, Giovanna
    Capsoni, Doretta
    SOLID STATE IONICS, 2018, 320 : 1 - 6
  • [28] AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries
    Li, Jiangang
    Zhang, Yayuan
    Li, Jianjun
    Wang, Li
    He, Xiangming
    Gao, Jian
    IONICS, 2011, 17 (08) : 671 - 675
  • [29] Truncated Octahedral Shape of Spinel LiNi0.5Mn1.5O4 via a Solid- State Method for Li-Ion Batteries
    Karunawan, Jotti
    Suryadi, Putri Nadia
    Mahfudh, Lauqhi
    Santosa, Sigit Puji
    Sumboja, Afriyanti
    Iskandar, Ferry
    ENERGY & FUELS, 2023, 37 (01) : 754 - 762
  • [30] Increased Cycling Performance of Li-Ion Batteries by Phosphoric Acid Modified LiNi0.5Mn1.5O4 Cathodes in the Presence of LiBOB
    Abeywardana, Maheeka Yapa
    Laszczynski, Nina
    Kuenzel, Matthias
    Bresser, Dominic
    Passerini, Stefano
    Lucht, Brett
    INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY, 2019, 2019