Nanoparticle-Nanorod Core-Shell LiNi0.5Mn1.5O4 Spinel Cathodes with High Energy Density for Li-Ion Batteries

被引:51
|
作者
Jo, Minki [1 ,2 ]
Lee, Young-Ki [3 ]
Kim, Kwang Man [3 ]
Cho, Jaephil [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Energy Engn, Ulsan 689798, South Korea
[2] Ulsan Natl Inst Sci & Technol, Converging Res Ctr Innovat Battery Technol, Ulsan 689798, South Korea
[3] Elect & Telecommun Res Inst, Res Team Nanoconvergence Sensor, Taejon 305700, South Korea
关键词
cathodes; electrochemistry; lithium compounds; nanoparticles; nanorods; nickel compounds; secondary cells; sol-gel processing; LITHIUM; LIMN2O4; PERFORMANCE;
D O I
10.1149/1.3428706
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanoparticle-nanorod core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries were prepared using a hollow MnO2 precursor. The core and shell parts consisted of nanoparticle (similar to 100 nm) and nanorod assemblies, respectively. The core-shell cathode exhibited greatly improved discharge capacities compared to nanoparticles prepared by a sol-gel method. The core-shell spinel exhibited discharge capacities of 121 and 100 mAh/g at 0.1C and 7C rates, respectively, whereas a spinel cathode prepared by a sol-gel method exhibited 99 and 80 mAh/g at those respective rates. In addition, the core-shell spinels demonstrated an energy density value that was enhanced by 52% to 1.6 Wh/cm(3) compared to an analogous sample prepared by a sol-gel method, which showed a value of 0.9 Wh/cm(3). (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3428706] All rights reserved.
引用
收藏
页码:A841 / A845
页数:5
相关论文
共 50 条
  • [1] Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries
    Liu, G. Q.
    Wen, L.
    Liu, Y. M.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (12) : 2191 - 2202
  • [2] One-step hydrothermal method synthesis of core shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries
    Liu, Yuanzhuang
    Zhang, Minghao
    Xia, Yonggao
    Qiu, Bao
    Liu, Zhaoping
    Li, Xing
    JOURNAL OF POWER SOURCES, 2014, 256 : 66 - 71
  • [3] Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries
    G. Q. Liu
    L. Wen
    Y. M. Liu
    Journal of Solid State Electrochemistry, 2010, 14 : 2191 - 2202
  • [4] Oxygen Deficiency and Defect Chemistry in Delithiated Spinel LiNi0.5Mn1.5O4 Cathodes for Li-Ion Batteries
    Wang, Zhiguo
    Su, Qiulei
    Deng, Huiqiu
    Fu, Yongqing
    CHEMELECTROCHEM, 2015, 2 (08): : 1182 - 1186
  • [5] Surface-Modified Spinel LiNi0.5Mn1.5O4 for Li-Ion Batteries
    Kim, Jongsoon
    Kim, Hyungsub
    Kang, Kisuk
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2018, 55 (01) : 21 - 35
  • [6] Both Interface and Bulk Stable LiNi0.5Mn1.5O4 Cathodes for High-Energy Li-Ion Batteries
    Luo, Hanwu
    Shi, Haipeng
    Cao, Yang
    Yin, Yuting
    Feng, Yi-Hu
    Fan, Xin-Yu
    Wang, Peng-Fei
    Han, Xiaogang
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7582 - 7589
  • [7] High Voltage Spinel-Structured LiNi0.5Mn1.5O4 as Cathode Materials for Li-Ion Batteries
    Deng Haifu
    Nie Ping
    Shen Laifa
    Luo Haifeng
    Zhang Xiaogang
    PROGRESS IN CHEMISTRY, 2014, 26 (06) : 939 - 949
  • [8] High Performance LiNi0.5Mn1.5O4 Spinel Li-ion Battery Cathode Development
    Xing, Weibing
    Buettner-Garrett, Josh
    Krysiak, Mike
    Kelly, Joe
    ENERGY TECHNOLOGY/BATTERY (GENERAL) - 223RD ECS MEETING, 2013, 53 (30): : 111 - 119
  • [9] Breaking Limits of Li-Ion Batteries with High-Voltage Spinel LiNi0.5Mn1.5O4 Nanofiber/Carbon Nanotube Composite Cathodes
    Na-Yeong Kim
    Min Kyoung Gi
    Zubair Ahmed Chandio
    Jeong-Ho Park
    Jun Young Cheong
    Ji-Won Jung
    Korean Journal of Chemical Engineering, 2024, 41 : 1513 - 1520
  • [10] Breaking Limits of Li-Ion Batteries with High-Voltage Spinel LiNi0.5Mn1.5O4 Nanofiber/Carbon Nanotube Composite Cathodes
    Kim, Na-Yeong
    Gi, Min Kyoung
    Chandio, Zubair Ahmed
    Park, Jeong-Ho
    Cheong, Jun Young
    Jung, Ji-Won
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (05) : 1513 - 1520