Effect of O2 contamination on carbon steel pseudo-passive scales in CO2 aqueous solutions

被引:8
作者
Basilico, Edoardo [1 ,2 ]
Marcelin, Sabrina [2 ]
Mingant, Remy [1 ]
Kittel, Jean [1 ]
Fregonese, Marion [2 ]
Barker, Richard [3 ]
Owen, Joshua [3 ]
Neville, Anne [3 ]
Ropital, Francois [1 ,2 ]
机构
[1] IFP Energies Nouvelles, BP 3, F-69360 Solaize, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, UMR5510, MATEIS,INSA Lyon,CNRS, F-69621 Villeurbanne, France
[3] Univ Leeds, Sch Mech Engn, Inst Funct Surfaces, Leeds LS2 9JT, W Yorkshire, England
关键词
Oxygen contamination; Pseudo-passivation; CO2; corrosion; Corrosion product layer; Siderite; Pitting; MILD-STEEL; CORROSION BEHAVIOR; DIOXIDE; IMPURITIES; EVOLUTION; MODEL; FILM; OIL;
D O I
10.1016/j.corsci.2022.110388
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Waters containing CO2 can lead to the formation of a "pseudo passive " protective corrosion product layer on carbon steel, however an oxygen contamination can significantly alter the corrosion behavior. The carbon steel API 5 L X65 specimens were tested in a CO2 saturated solution with small concentrations of O-2 (90-270 ppb). Electrochemical techniques, Raman spectroscopy and SEM were used for determining the corrosion product layer properties. Oxygen contamination induces pits that result in a significant increase and instability of the open circuit potential. Removing the oxygen contamination, stops pits propagation and the carbon steel surface regains its "pseudo-passive " behavior.
引用
收藏
页数:11
相关论文
共 31 条
[1]  
[Anonymous], 2005, ASTM G46-94
[2]  
ASTM, 2017, Des: G1-03
[3]   Oxidation of chukanovite (Fe2(OH)2CO3): Influence of the concentration ratios of reactants [J].
Azoulay, I. ;
Remazeilles, C. ;
Refait, Ph. .
CORROSION SCIENCE, 2015, 98 :634-642
[4]   Determination of standard Gibbs free energy of formation of chukanovite and Pourbaix diagrams of iron in carbonated media [J].
Azoulay, I. ;
Remazeilles, C. ;
Refait, Ph. .
CORROSION SCIENCE, 2012, 58 :229-236
[5]   A review of iron carbonate (FeCO3) formation in the oil and gas industry [J].
Barker, Richard ;
Burkle, Daniel ;
Charpentier, Thibaut ;
Thompson, Harvey ;
Neville, Anne .
CORROSION SCIENCE, 2018, 142 :312-341
[6]   The effect of chemical species on the electrochemical reactions and corrosion product layer of carbon steel in CO2 aqueous environment: A review [J].
Basilico, Edoardo ;
Marcelin, Sabrina ;
Mingant, Remy ;
Kittel, Jean ;
Fregonese, Marion ;
Ropital, Francois .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2021, 72 (07) :1152-1167
[7]   Effect of Impurities on the Corrosion Behavior of CO2 Transmission Pipeline Steel in Supercritical CO2-Water Environments [J].
Choi, Yoon-Seok ;
Nesic, Srdjan ;
Young, David .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (23) :9233-9238
[8]   Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem? [J].
Cole, Ivan S. ;
Corrigan, Penny ;
Sim, Samson ;
Birbilis, Nick .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (04) :749-756
[9]   A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel [J].
De Motte, Rehan ;
Basilico, Edoardo ;
Mingant, Remy ;
Kittel, Jean ;
Ropital, Francois ;
Combrade, Pierre ;
Necib, Sophia ;
Deydier, Valerie ;
Crusset, Didier ;
Marcelin, Sabrina .
CORROSION SCIENCE, 2020, 172
[10]  
Gulbrandsen E., 2006, CORROSION 2006