Ascorbic acid-assisted solvothermal synthesis of LiMn1-xFexPO4/C nanoparticles for high-performance Li-ion cathode materials

被引:25
作者
Li, Jing [1 ]
Guo, Chaowei [1 ]
Qin, Yuanbin [1 ]
Ning, Xiaohui [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Ctr Advancing Mat Performance Nanoscale CAMP Nano, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery; solvothermal reaction; cathode; lithium manganese iron phosphate; ELECTROCHEMICAL PERFORMANCE; PHOSPHO-OLIVINES; LIMPO4; M; LITHIUM; LIMNPO4; COMPOSITE; TRANSPORT; LIFEPO4; FACILE; MN;
D O I
10.1080/10667857.2020.1712533
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
LiFePO4 is a promising cathode material for lithium-ion batteries due to its excellent rate capability and superior safety. However, its relatively low energy density makes the research efforts towards another olivine structure material LiMnPO4, which exhibits higher energy density and operating voltage. Nevertheless, LiMnPO4 does not show the remarkable electrochemical performance attributing from the low electronic/ionic conductivity. To solve the problems, a facile solvothermal method is used to successfully synthetise the LiMn1-xFexPO4/C with different Fe/Mn ratio (LMFP/C) nanoparticle in this paper. The length of the obtained LiMn1-xFexPO4/C is less than 200 nm. Owing to the doping of iron and the nano-structure, the LiMn0.5Fe0.5PO4/C nanoparticle exhibits high discharge capacities of 153.6, 143.2 and 134.5 mAh g(-1) at rates 0.1 C, 1 C and 5 C, respectively. Furthermore, the effects of pH on the morphology evolution and electrochemical performance have been also investigated in detail.
引用
收藏
页码:565 / 571
页数:7
相关论文
共 32 条
[1]   Anisotropy of electronic and ionic transport in LiFePO4 single crystals [J].
Amin, Ruhul ;
Balaya, Palani ;
Maier, Joachim .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) :A13-A16
[2]   LiMnPO4 - A next generation cathode material for lithium-ion batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3518-3539
[3]   Hierarchical porous LiFePO4/Carbon composite electrodes for lithium-ion batteries [J].
Bai, Ningbo ;
Xiang, Kaixiong ;
Zhou, Wei ;
Lu, Huayu ;
Chen, Han .
MATERIALS TECHNOLOGY, 2017, 32 (04) :203-209
[4]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[5]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[6]   Recent Advances of Mn-Rich LiFe1-yMnyPO4 (0.5=y < 1.0) Cathode Materials for High Energy Density Lithium Ion Batteries [J].
Deng, Yuanfu ;
Yang, Chunxiang ;
Zou, Kaixiang ;
Qin, Xusong ;
Zhao, Zhenxia ;
Chen, Guohua .
ADVANCED ENERGY MATERIALS, 2017, 7 (13)
[7]   Nonaqueous synthesis of nano-sized LiMnPO4@C as a cathode material for high performance lithium ion batteries [J].
Fan, Jingmin ;
Yu, Yang ;
Wang, Yang ;
Wu, Qi-Hui ;
Zheng, Mingsen ;
Dong, Quanfeng .
ELECTROCHIMICA ACTA, 2016, 194 :52-58
[8]   Recent developments in cathode materials for lithium ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :939-954
[9]   Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni):: Insights into defect association, transport mechanisms, and doping behavior [J].
Fisher, Craig A. J. ;
Prieto, Veluz M. Hart ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2008, 20 (18) :5907-5915
[10]   Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62 [J].
Fu, Qingfeng ;
Li, Renjie ;
Zhu, Xiangzhen ;
Liang, Guisheng ;
Luo, Lijie ;
Chen, Yongjun ;
Lin, Chunfu ;
Zhao, X. S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (34) :19862-19871