Existence theorem and blow-up criterion of the strong solutions to the two-fluid MHD equation in R3

被引:36
作者
Chen, Qionglei [1 ]
Miao, Changxing [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
MHD equations; well-posedness; blow-up; Littlewood-Paley decomposition; Besov space;
D O I
10.1016/j.jde.2007.03.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first give the local well-posedness of strong solutions to the Cauchy problem of the 3D two-fluid MHD equations, and then study the blow-up criterion of the strong solutions. By means of the Fourier frequency localization and Bony's paraproduct decomposition, it is proved that the strong solution (u, b) can be extended after t = T if either u is an element of L-T(q) ((B)over dot(p,infinity)(0)) with 2/q + 3/p <= 1 and b is an element of L-T(1) ((B)over dot(infinity,infinity)(0)) or (omega, J) is an element of L-T(q) ((B) over dot(p,infinity)(0)) with 2/q + 3/p <= 2, where omega(t) = del x u denotes the vorticity of the velocity and J = del x b stands for the current density. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 271
页数:21
相关论文
共 23 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]  
BERGH J, 1976, INTRODUCTION
[4]  
Biskamp D., 2000, Cambridge Monographs on Plasma Physics
[5]  
Biskamp D, 1993, Nonlinear Magnetohydrodynamics
[6]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[7]   Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD [J].
Caflisch, RE ;
Klapper, I ;
Steele, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :443-455
[8]   A losing estimate for the ideal MHD equations with application to blow-up criterion [J].
Cannone, Marco ;
Chen, Qionglei ;
Miao, Changxing .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) :1847-1859
[9]  
Chemin J.-Y., 1998, Perfect Incompressible Fluids
[10]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407