Faedo-Galerkin weak solutions of the Navier-Stokes equations with Dirichlet boundary conditions are suitable

被引:30
作者
Guermond, J.-L. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2007年 / 88卷 / 01期
关键词
Navier-Stokes equations; suitable weak solutions; Faedo-Galerkin approximation; finite element approximation; APPROXIMATION; REGULARITY;
D O I
10.1016/j.matpur.2007.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Faedo-Galerkin weak solutions of the three-dimensional Navier-Stokes equations supplemented with Dirichlet boundary conditions in bounded domains are suitable in the sense of Scheffer [V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (2) (1977) 97-112] provided they are constructed using finite-dimensional approximation spaces having a discrete commutator property and satisfying a proper inf-sup condition. Finite element and wavelet spaces appear to be acceptable for this purpose. This result extends that of [J.-L. Guermond, Finite-element-based Faedo-Galerkin weak solutions to the Navier-Stokes equations in the three-dimensional torus are suitable, J. Math. Pures Appl. (9) 85 (3) (2066) 451-464] where periodic boundary conditions were assumed. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:87 / 106
页数:20
相关论文
共 30 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1968, Problemes Aux Limites Non-Homogenes et Applications
[3]  
[Anonymous], 2000, TRANSLATIONS MATH MO
[4]   The discrete commutator property of approximation spaces [J].
Bertoluzza, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (12) :1097-1102
[5]  
Bramble JH, 2000, HDBK NUM AN, V7, P173
[6]  
Bramble JH, 2002, MATH COMPUT, V71, P147, DOI 10.1090/S0025-5718-01-01314-X
[7]  
Brezzi F., 2012, Mixed and Hybrid Finite Element Methods
[8]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[10]  
DAVEIGA HB, 1985, J MATH PURE APPL, V64, P77