Strong convergence theorems for relatively nonexpansive mappings in a Banach space

被引:109
作者
Qin, Xiaolong [1 ]
Su, Yongfu [1 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R China
关键词
relatively nonexpansive mapping; nonexpansive mapping; generalized projection; asymptotic fixed point;
D O I
10.1016/j.na.2006.08.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove two strong convergence theorems of modified Ishikawa iteration and modified Halpern iteration for relatively nonexpansive mappings in a Banach space. Our results extend and improve the recent ones announced by Nakajo, Takahashi, Kim, Martinez-Yanes, Xu and some others. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1958 / 1965
页数:8
相关论文
共 19 条
[1]  
Alber Y., 1994, Panamer. Math. J., V4, P39
[2]  
Alber Y., 2001, Analysis (Munich), V21, P17
[3]  
Alber YI, 1996, THEORY APPL NONLINEA, V178, P15
[4]   Weak convergence of orbits of nonlinear operators in reflexive Banach [J].
Butnariu, D ;
Reich, S ;
Zaslavski, AJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (5-6) :489-508
[5]  
Butnariu D, 2001, J APPL ANAL, V7, P151, DOI DOI 10.1515/JAA.2001.151
[6]  
Censor Y., 1996, Optimization, V37, P323, DOI 10.1080/02331939608844225
[7]   An example on the Mann iteration method for Lipschitz pseudocontractions [J].
Chidume, CE ;
Mutangadura, SA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2359-2363
[8]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC
[9]   EXAMPLE CONCERNING FIXED-POINTS [J].
GENEL, A ;
LINDENSTRAUSS, J .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (01) :81-92
[10]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&