Piezoelectric Nanoparticle-Polymer Composite Foams

被引:76
作者
McCall, William R. [1 ]
Kim, Kanguk [2 ]
Heath, Cory [1 ]
La Pierre, Gina [1 ]
Sirbuly, Donald J. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
piezoelectric; nanoparticle; foam; composite; BaTiO3; polymer; ENERGY-CONVERSION; PVDF; CERAMICS; OIL; NANOGENERATOR; RUBBER;
D O I
10.1021/am506415y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of similar to 112 pC/N and a power output of similar to 18 mW/cm(3) under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.
引用
收藏
页码:19504 / 19509
页数:6
相关论文
共 32 条
  • [11] The impact of piezoelectric PVDF on medical ultrasound exposure measurements, standards, and regulations
    Harris, GR
    Preston, RC
    DeReggi, AS
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2000, 47 (06) : 1321 - 1335
  • [12] Hu ZJ, 2009, NAT MATER, V8, P62, DOI [10.1038/nmat2339, 10.1038/NMAT2339]
  • [13] Jaffe B., 1971, Piezoelectric Ceramics
  • [14] Porous PZT ceramics for receiving transducers
    Kara, H
    Ramesh, R
    Stevens, R
    Bowen, CR
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2003, 50 (03) : 289 - 296
  • [15] PIEZOELECTRICITY OF POLY (VINYLIDENE FLUORIDE)
    KAWAI, H
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 1969, 8 (07) : 975 - &
  • [16] 3D Optical Printing of Piezoelectric Nanoparticle - Polymer Composite Materials
    Kim, Kanguk
    Zhu, Wei
    Qu, Xin
    Aaronson, Chase
    McCall, William R.
    Chen, Shaochen
    Sirbuly, Donald J.
    [J]. ACS NANO, 2014, 8 (10) : 9799 - 9806
  • [17] Nguyen TD, 2012, NAT NANOTECHNOL, V7, P587, DOI [10.1038/nnano.2012.112, 10.1038/NNANO.2012.112]
  • [18] Rapid Removal of Organics and Oil Spills from Waters Using Silicone Rubber "Sponges"
    Park, Insun
    Efimenko, Kirill
    Sjoblom, Johan
    Genzer, Jan
    [J]. JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2009, 30 (03) : 318 - 327
  • [19] Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons
    Park, Kwi-Il
    Lee, Minbaek
    Liu, Ying
    Moon, San
    Hwang, Geon-Tae
    Zhu, Guang
    Kim, Ji Eun
    Kim, Sang Ouk
    Kim, Do Kyung
    Wang, Zhong Lin
    Lee, Keon Jae
    [J]. ADVANCED MATERIALS, 2012, 24 (22) : 2999 - 3004
  • [20] High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)
    Persano, Luana
    Dagdeviren, Canan
    Su, Yewang
    Zhang, Yihui
    Girardo, Salvatore
    Pisignano, Dario
    Huang, Yonggang
    Rogers, John A.
    [J]. NATURE COMMUNICATIONS, 2013, 4