On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT

被引:449
作者
Chaichian, M
Kulish, PP
Nishijima, K
Tureanu, A
机构
[1] Univ Helsinki, Div High Energy Phys, Dept Phys Sci, FIN-00014 Helsinki, Finland
[2] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
[4] Nishina Mem Fdn, Bunkyo Ku, Tokyo 1138941, Japan
基金
芬兰科学院; 俄罗斯基础研究基金会;
关键词
D O I
10.1016/j.physletb.2004.10.045
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
By invoking the concept of twisted Poincare symmetry of the algebra of functions on a Minkowski space-time, we demonstrate that the noncommutative space-time with the commutation relations [x(mu), x(nu)] = ithetamunu, where thetamunu is a constant real antisymmetric matrix, can be interpreted in a Lorentz-invariant way. The implications of the twisted Poincare symmetry on QFT on such a space-time is briefly discussed. The presence of the twisted symmetry gives justification to all the previous treatments within NC QFT using Lorentz invariant quantities and the representations of the usual Poincare symmetry. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 102
页数:5
相关论文
共 20 条
  • [1] General properties of non-commutative field theories
    Alvarez-Gaumé, L
    Vázquez-Mozo, MA
    [J]. NUCLEAR PHYSICS B, 2003, 668 (1-2) : 293 - 321
  • [2] Alvarez-Gaumé L, 2001, J HIGH ENERGY PHYS
  • [3] QUANTUM POINCARE GROUP WITHOUT DILATATION AND TWISTED CLASSICAL ALGEBRA
    CHAICHIAN, M
    DEMICHEV, AP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) : 398 - 413
  • [4] Toward an axiomatic formulation of noncommutative quantum field theory
    Chaichian, M.
    Mnatsakanova, M. N.
    Nishijima, K.
    Tureanu, A.
    Vernov, Yu. S.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
  • [5] Spin-statistics and CPT theorems in noncommutative field theory
    Chaichian, M
    Nishijima, K
    Tureanu, A
    [J]. PHYSICS LETTERS B, 2003, 568 (1-2) : 146 - 152
  • [6] CHAICHIAN M, HEPTH0409096
  • [7] CHAICHIAN M, 1996, INTRO QUANTUM GROUPS
  • [8] CHAICHIAN M, HEPTH0403032, P14610
  • [9] Chari V., 1995, A Guide to Quantum Groups
  • [10] Noncommutative field theory
    Douglas, MR
    Nekrasov, NA
    [J]. REVIEWS OF MODERN PHYSICS, 2001, 73 (04) : 977 - 1029