Singular Schrodinger operators as limits of point interaction Hamiltonians

被引:31
作者
Brasche, JF
Figari, R
Teta, A
机构
[1] Univ Bielefeld, Fak Math, D-3501 Bielefeld, Germany
[2] Dipartimento Fis, I-80125 Naples, Italy
[3] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
point interaction; generalized Schrodinger operator; resolvent convergence; Monte Carlo methods;
D O I
10.1023/A:1008654423238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give results on the approximation of (generalized) Schrodinger operators of the form -Delta + mu for some finite Radon measure mu on R-d. For d = 1 we shall show that weak convergence of measures mu(n) to mu implies norm resolvent convergence of the operators -Delta + mu(n) to -Delta + mu. In particular Schrodinger operators of the form -Delta + mu for some finite Radon measure mu can be regularized or approximated by Hamiltonians describing point interactions. For d = 3 we shall show that a fairly large class of singular interactions can be regarded as limit of point interactions.
引用
收藏
页码:163 / 178
页数:16
相关论文
共 26 条
[1]  
ALBEVEIRO S, 1991, IDEAS METHODS MATH A, V2, P63
[2]  
ALBEVERIO S, 1989, LECT NOTES PHYS, V345, P1
[3]   CONVERGENCE OF DIRICHLET FORMS AND ASSOCIATED SCHRODINGER-OPERATORS [J].
ALBEVERIO, S ;
KUSUOKA, S ;
STREIT, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 68 (02) :130-148
[4]   ON THE CONNECTION BETWEEN SCHRODINGER AND DIRICHLET FORMS [J].
ALBEVERIO, S ;
GESZTESY, F ;
KARWOWSKI, W ;
STREIT, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (10) :2546-2553
[5]  
Albeverio S., 1986, NONSTANDARD METHODS
[6]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[7]  
ALTENHOFEN H, 1994, THESIS FRANKFURT MAI
[8]  
ANTOINE JP, 1987, J PHYS A, V20, P3627
[10]   SCHRODINGER-OPERATORS WITH SINGULAR INTERACTIONS [J].
BRASCHE, JF ;
EXNER, P ;
KUPERIN, YA ;
SEBA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (01) :112-139