Network Pharmacology and Molecular Docking Suggest the Mechanism for Biological Activity of Rosmarinic Acid

被引:17
作者
Guan, Minglong [1 ,2 ,3 ]
Guo, Lan [4 ]
Ma, Hengli [1 ,2 ,3 ]
Wu, Huimei [1 ,2 ,3 ]
Fan, Xiaoyun [1 ,2 ,3 ]
机构
[1] Anhui Med Univ, Dept Geriatr Resp & Crit Care, Affiliated Hosp 1, Jixi Rd 218, Hefei 230022, Anhui, Peoples R China
[2] Anhui Geriatr Inst, Jixi Rd 218, Hefei 230022, Anhui, Peoples R China
[3] Anhui Med Univ, Anhui Key Lab Geriatr Mol Med, Jixi Rd 218, Hefei 230022, Anhui, Peoples R China
[4] Anhui Med Univ, Sch Basic Med Sci, Dept Biochem & Mol Biol, Meishan Rd 81, Hefei 230032, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
DRUG DISCOVERY; EXTRACT; SUPPRESSION; PATHWAYS; DELIVERY; MODEL;
D O I
10.1155/2021/5190808
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Rosmarinic acid (RosA) is a natural phenolic acid compound, which is mainly extracted from Labiatae and Arnebia. At present, there is no systematic analysis of its mechanism. Therefore, we used the method of network pharmacology to analyze the mechanism of RosA. In our study, PubChem database was used to search for the chemical formula and the Chemical Abstracts Service (CAS) number of RosA. Then, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to evaluate the pharmacodynamics of RosA, and the Comparative Toxicogenomics Database (CTD) was used to identify the potential target genes of RosA. In addition, the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes were carried out by using the web-based gene set analysis toolkit (WebGestalt). At the same time, we uploaded the targets to the STRING database to obtain the protein interaction network. Then, we carried out a molecular docking about targets and RosA. Finally, we used Cytoscape to establish a visual protein-protein interaction network and drug-target-pathway network and analyze these networks. Our data showed that RosA has good biological activity and drug utilization. There are 55 target genes that have been identified. Then, the bioinformatics analysis and network analysis found that these target genes are closely related to inflammatory response, tumor occurrence and development, and other biological processes. These results demonstrated that RosA can act on a variety of proteins and pathways to form a systematic pharmacological network, which has good value in drug development and utilization.
引用
收藏
页数:10
相关论文
共 48 条
  • [1] Bioavailability and metabolism of rosemary infusion polyphenols using Caco-2 and HepG2 cell model systems
    Achour, Mariem
    Saguem, Saad
    Sarria, Beatriz
    Bravo, Laura
    Mateos, Raquel
    [J]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2018, 98 (10) : 3741 - 3751
  • [2] [Anonymous], 2019, NUCLEIC ACIDS RES, DOI DOI 10.1093/NAR/GKY1033
  • [3] Absorption, metabolism, degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans
    Baba, S
    Osakabe, N
    Natsume, M
    Yasuda, A
    Muto, Y
    Hiyoshi, K
    Takano, H
    Yoshikawa, T
    Terao, J
    [J]. EUROPEAN JOURNAL OF NUTRITION, 2005, 44 (01) : 1 - 9
  • [4] Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington's disease
    Bhatt, Rahul
    Singh, Devendra
    Prakash, Atish
    Mishra, Neeraj
    [J]. DRUG DELIVERY, 2015, 22 (07) : 931 - 939
  • [5] Antitumor Mechanisms of Curcumae Rhizoma Based on Network Pharmacology
    Bi, Yan-Hua
    Zhang, Li-hua
    Chen, Shao-jun
    Ling, Qing-zhi
    [J]. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2018, 2018
  • [6] Toxicology Strategies for Drug Discovery: Present and Future
    Blomme, Eric A. G.
    Will, Yvonne
    [J]. CHEMICAL RESEARCH IN TOXICOLOGY, 2016, 29 (04) : 473 - 504
  • [7] Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl.
    Boonyarikpunchai, Wanvisa
    Sukrong, Suchada
    Towiwat, Pasarapa
    [J]. PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 2014, 124 : 67 - 73
  • [8] RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences
    Burley, Stephen K.
    Bhikadiya, Charmi
    Bi, Chunxiao
    Bittrich, Sebastian
    Chen, Li
    Crichlow, Gregg, V
    Christie, Cole H.
    Dalenberg, Kenneth
    Di Costanzo, Luigi
    Duarte, Jose M.
    Dutta, Shuchismita
    Feng, Zukang
    Ganesan, Sai
    Goodsell, David S.
    Ghosh, Sutapa
    Green, Rachel Kramer
    Guranovic, Vladimir
    Guzenko, Dmytro
    Hudson, Brian P.
    Lawson, Catherine L.
    Liang, Yuhe
    Lowe, Robert
    Namkoong, Harry
    Peisach, Ezra
    Persikova, Irina
    Randle, Chris
    Rose, Alexander
    Rose, Yana
    Sali, Andrej
    Segura, Joan
    Sekharan, Monica
    Shao, Chenghua
    Tao, Yi-Ping
    Voigt, Maria
    Westbrook, John D.
    Young, Jasmine Y.
    Zardecki, Christine
    Zhuravleva, Marina
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D437 - D451
  • [9] Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice
    Cao, Wen
    Hu, Chao
    Wu, Lingling
    Xu, Liba
    Jiang, Weizhe
    [J]. JOURNAL OF PHARMACOLOGICAL SCIENCES, 2016, 132 (02) : 131 - 137
  • [10] Expansion of the Gene Ontology knowledgebase and resources
    Carbon, S.
    Dietze, H.
    Lewis, S. E.
    Mungall, C. J.
    Munoz-Torres, M. C.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Fey, P.
    Thomas, P. D.
    Mi, H.
    Muruganujan, A.
    Huang, X.
    Poudel, S.
    Hu, J. C.
    Aleksander, S. A.
    McIntosh, B. K.
    Renfro, D. P.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Marygold, S. J.
    McQuilton, P.
    Ponting, L.
    Millburn, G. H.
    Rey, A. J.
    Stefancsik, R.
    Tweedie, S.
    Falls, K.
    Schroeder, A. J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Lovering, R. C.
    Foulger, R. E.
    Huntley, R. P.
    Denny, P.
    Campbell, N. H.
    Kramarz, B.
    Patel, S.
    Buxton, J. L.
    Umrao, Z.
    Deng, A. T.
    Alrohaif, H.
    Mitchell, K.
    Ratnaraj, F.
    Omer, W.
    Rodriguez-Lopez, M.
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D331 - D338