A SECOND-ORDER FINITE ELEMENT METHOD WITH MASS LUMPING FOR MAXWELL'S EQUATIONS ON TETRAHEDRA

被引:3
|
作者
Egger, Herbert [1 ]
Radu, Bogdan [1 ]
机构
[1] Tech Univ Darmstadt, Dept Math, D-64293 Darmstadt, Germany
关键词
finite elements; Maxwell's equations; mass lumping; DISCRETIZATION; SCHEMES;
D O I
10.1137/20M1318912
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical approximation of Maxwell's equations in the time domain by a second-order H(curl) conforming finite element approximation. In order to enable the efficient application of explicit time-stepping schemes, we utilize a mass-lumping strategy resulting from numerical integration in conjunction with the finite element spaces introduced in [A. Elmkies and P. Joly, C. R. Acad. Sci. Paris Ser. I Math., 325 (1997), pp. 1217-1222]. We prove that this method is second-order accurate if the true solution is divergence free but the order of accuracy reduces to one in the general case. We then propose a modification of the finite element space, which yields second-order accuracy in the general case.
引用
收藏
页码:864 / 885
页数:22
相关论文
共 50 条
  • [31] Efficient second-order semi-implicit finite element method for fourth-order nonlinear diffusion equations
    Keita, Sana
    Beljadid, Abdelaziz
    Bourgault, Yves
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 258
  • [32] Efficient second-order semi-implicit finite element method for fourth-order nonlinear diffusion equations
    Keita, Sana
    Beljadid, Abdelaziz
    Bourgault, Yves
    Beljadid, Abdelaziz (abdelaziz.beljadid@um6p.ma), 1600, Elsevier B.V. (258):
  • [33] A weak Galerkin finite element method for second-order elliptic problems
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 241 : 103 - 115
  • [34] A discontinuous finite volume element method for second-order elliptic problems
    Bi, Chunjia
    Liu, Mingming
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (02) : 425 - 440
  • [35] A note on mass lumping in the finite element time domain method
    Lee, R
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (02) : 760 - 762
  • [36] A smoothed finite element method using second-order cone programming
    Meng, Jingjing
    Zhang, Xue
    Huang, Jinsong
    Tang, Hongxiang
    Mattsson, Hans
    Laue, Jan
    COMPUTERS AND GEOTECHNICS, 2020, 123
  • [37] A quadrature finite element method for semilinear second-order hyperbolic problems
    Mustapha, K.
    Mustapha, H.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 350 - 367
  • [38] Convergence of the compact finite difference method for second-order elliptic equations
    Zhao, Jichao
    Zhang, Tie
    Corless, Robert M.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1454 - 1469
  • [39] Preconditioners for higher order edge finite element discretizations of Maxwell’s equations
    LiuQiang Zhong
    Shi Shu
    DuDu Sun
    Lin Tan
    Science in China Series A: Mathematics, 2008, 51
  • [40] ADAPTIVE HYBRID FINITE ELEMENT/DIFFERENCE METHOD FOR MAXWELL'S EQUATIONS
    Beilina, Larisa
    Grote, Marcus J.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 1 (02): : 176 - 197