A SECOND-ORDER FINITE ELEMENT METHOD WITH MASS LUMPING FOR MAXWELL'S EQUATIONS ON TETRAHEDRA

被引:5
作者
Egger, Herbert [1 ]
Radu, Bogdan [1 ]
机构
[1] Tech Univ Darmstadt, Dept Math, D-64293 Darmstadt, Germany
关键词
finite elements; Maxwell's equations; mass lumping; DISCRETIZATION; SCHEMES;
D O I
10.1137/20M1318912
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical approximation of Maxwell's equations in the time domain by a second-order H(curl) conforming finite element approximation. In order to enable the efficient application of explicit time-stepping schemes, we utilize a mass-lumping strategy resulting from numerical integration in conjunction with the finite element spaces introduced in [A. Elmkies and P. Joly, C. R. Acad. Sci. Paris Ser. I Math., 325 (1997), pp. 1217-1222]. We prove that this method is second-order accurate if the true solution is divergence free but the order of accuracy reduces to one in the general case. We then propose a modification of the finite element space, which yields second-order accuracy in the general case.
引用
收藏
页码:864 / 885
页数:22
相关论文
共 28 条
[1]  
Boffi D., 2013, MIXED FINITE ELEMENT, V44
[2]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[3]  
Ciarlet P. G., 1978, STUDIES MATH ITS APP, V4
[4]   Explicit, consistent, and conditionally stable extension of FD-TD to tetrahedral grids by FIT [J].
Codecasa, Lorenzo ;
Politi, Marco .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :1258-1261
[5]  
Cohen G, 1998, NUMER METH PART D E, V14, P63, DOI 10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.3.CO
[6]  
2-O
[7]  
Cohen G., 2002, Higher-Order Numerical Methods for Transient Wave Equations
[8]   L2-ESTIMATES FOR GALERKIN METHODS FOR SECOND-ORDER HYPERBOLIC EQUATIONS [J].
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :880-889
[9]  
EGGER H., 2018, ARXIV106803818
[10]  
Elmkies A, 1997, CR ACAD SCI I-MATH, V325, P1217, DOI 10.1016/S0764-4442(97)83557-4