Mountain pass and Ekeland's principle for eigenvalue problem with variable exponent

被引:13
作者
Benali, Khaled [2 ]
Kefi, Khaled [1 ]
机构
[1] Inst Super Transport & Logist Sousse, Sousse 4029, Tunisia
[2] Inst Preparatoire Etud Ingenieurs Tunis, Montfleury Tunis 1008, Tunisia
关键词
p(x)-Laplace operator; Ekeland's variational principle; generalized Sobolev spaces; Mountain pass Theorem; weak solution; EXISTENCE; SPACES; MULTIPLICITY;
D O I
10.1080/17476930902999041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the boundary value problem -div(vertical bar del u vertical bar(p(x)-2)del u) + vertical bar u vertical bar(alpha(x)-2)u=lambda vertical bar u vertical bar(q(x)-2)u, in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N and p, q, alpha are continuous functions on (Omega) over bar. We show that for any lambda > 0 there exists infinitely many weak solutions (respectively, if lambda > 0 and small enough, then there exists a non-negative, non-trivial weak solution). Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a Z(2) symmetric version for even functionals of the Mountain pass Theorem (respectively on simple variational arguments based on Ekeland's variational principle).
引用
收藏
页码:795 / 809
页数:15
相关论文
共 15 条
[1]  
Alves CO, 2006, PROG NONLINEAR DIFFE, V66, P17
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1998, J. Gansu Educ. Coll
[4]  
Benali K., 2008, POTENTIAL THEORY STO, P21
[5]   Existence of solutions for p(x)-Laplacian problems on a bounded domain [J].
Chabrowski, J ;
Fu, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :604-618
[6]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[7]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[8]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[9]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[10]  
LEDRET H, 2005, M2 EQUATIONS DERIVEE, P117