Soliton solutions and quasiperiodic solutions of modified Korteweg-de Vries type equations

被引:19
作者
Geng, Xianguo [1 ]
Xue, Bo [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.3409345
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hierarchy of new nonlinear evolution equations which contains the modified Korteweg-de Vries equation is proposed. With the aid of the inverse scattering transformation, N-soliton solutions of the first two nonlinear evolution equations in this hierarchy are derived. Based on the theory of algebraic curve, the corresponding flows are straightened under the Abel-Jacobi coordinates. The meromorphic function phi and the hyperelliptic curve K-n are introduced by which quasiperiodic solutions of the first two nonlinear evolution equations are constructed according to the asymptotic properties and the algebrogeometric characters of phi and K-n. (C) 2010 American Institute of Physics. [doi :10.1063/1.3409345]
引用
收藏
页数:15
相关论文
共 23 条
[1]  
Belokolos E.D., 1994, Algebro-geometric Approach to Nonlinear Integrable Equations
[2]  
Cao C.W., 1990, Nonlinear Physics, P68, DOI 10.1007/978-3-642-84148-4_9
[3]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970
[4]  
Dubrovin BA., 1975, FUNCT ANAL APPL, V9, P215, DOI [10.1007/BF01075598, DOI 10.1007/BF01075598]
[5]   Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations [J].
Geng, XG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (09) :2289-2303
[6]   Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation [J].
Geng, XG ;
Wu, YT ;
Cao, CW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (20) :3733-3742
[7]   Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions [J].
Geng, XG ;
Cao, CW .
NONLINEARITY, 2001, 14 (06) :1433-1452
[8]   An extension of integrable peakon equations with cubic nonlinearity [J].
Geng, Xianguo ;
Xue, Bo .
NONLINEARITY, 2009, 22 (08) :1847-1856
[9]  
GESZTESY F, 1995, MEM AM MATH SOC, V118, pR8
[10]  
GESZTESY F, 1992, IDEAS METHODS MATH A