An Effective Method for Parameter Estimation of Solar PV Cell Using Grey-Wolf Optimization Technique

被引:18
作者
Sharma, Abhishek [1 ]
Sharma, Abhinav [2 ]
Moshe, Averbukh [3 ]
Raj, Nikhil [1 ]
Pachauri, Rupendra Kumar [2 ]
机构
[1] Univ Petr & Energy Studies, Res & Dev Dept, Dehra Dun, Uttarakhand, India
[2] Univ Petr & Energy Studies, Dept Elect & Elect Engn, Dehra Dun, Uttarakhand, India
[3] Ariel Univ, Dept Elect & Elect Engn, Ariel, Israel
关键词
Photovoltaic; GWO; Parameter extraction; Single-diode model; Double-diode model; MAXIMUM POWER POINT; RENEWABLE ENERGY; DIODE MODEL; EXTRACTION; ALGORITHM; IDENTIFICATION; SYSTEM;
D O I
10.33889/IJMEMS.2021.6.3.054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the field of renewable energy, the extraction of parameters for solar photovoltaic (PV) cells is a widely studied area of research. Parameter extraction of solar PV cell is a highly non-linear complex optimization problem. In this research work, the authors have explored grey wolf optimization (GWO) algorithm to estimate the optimized value of the unknown parameters of a PV cell. The simulation results have been compared with five different pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), chicken swarm optimization (CSO) and cultural algorithm (CA). Furthermore, a comparison with the algorithms existing in the literature is also carried out. The comparative results comprehensively demonstrate that GWO outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and the rate of convergence. Furthermore, the statistical results validate and indicate that GWO algorithm is better than other algorithms in terms of average accuracy and robustness. An extensive comparison of electrical performance parameters: maximum current, voltage, power, and fill factor (FF) has been carried out for both PV model.
引用
收藏
页码:911 / 931
页数:21
相关论文
共 53 条
[21]   Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction [J].
Gao, Xiankun ;
Cui, Yan ;
Hu, Jianjun ;
Xu, Guangyin ;
Yu, Yongchang .
ENERGY CONVERSION AND MANAGEMENT, 2016, 127 :443-460
[22]   The role of renewable energy in the global energy transformation [J].
Gielen, Dolf ;
Boshell, Francisco ;
Saygin, Deger ;
Bazilian, Morgan D. ;
Wagner, Nicholas ;
Gorini, Ricardo .
ENERGY STRATEGY REVIEWS, 2019, 24 :38-50
[23]   Parameter extraction of solar cell models using repaired adaptive differential evolution [J].
Gong, Wenyin ;
Cai, Zhihua .
SOLAR ENERGY, 2013, 94 :209-220
[24]   Parameter extraction of solar photovoltaic modules using penalty-based differential evolution [J].
Ishaque, Kashif ;
Salam, Zainal ;
Mekhilef, Saad ;
Shamsudin, Amir .
APPLIED ENERGY, 2012, 99 :297-308
[25]   Characterization of PV panel and global optimization of its model parameters using genetic algorithm [J].
Ismail, M. S. ;
Moghavvemi, M. ;
Mahlia, T. M. I. .
ENERGY CONVERSION AND MANAGEMENT, 2013, 73 :10-25
[26]  
Jayapriya J, 2015, 2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P210, DOI 10.1109/ICACCI.2015.7275611
[27]   Solar cell parameter extraction using genetic algorithms [J].
Jervase, JA ;
Bourdoucen, H ;
Al-Lawati, A .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (11) :1922-1925
[28]   Parameter estimation of solar photovoltaic (PV) cells: A review [J].
Jordehi, A. Rezaee .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 61 :354-371
[29]   Wide range temperature dependence of analytical photovoltaic cell parameters for silicon solar cells under high illumination conditions [J].
Khan, Firoz ;
Baek, Seong-Ho ;
Kim, Jae Hyun .
APPLIED ENERGY, 2016, 183 :715-724
[30]   A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm [J].
Khanna, Vandana ;
Das, B. K. ;
Bisht, Dinesh ;
Vandana ;
Singh, P. K. .
RENEWABLE ENERGY, 2015, 78 :105-113