An Effective Method for Parameter Estimation of Solar PV Cell Using Grey-Wolf Optimization Technique

被引:18
作者
Sharma, Abhishek [1 ]
Sharma, Abhinav [2 ]
Moshe, Averbukh [3 ]
Raj, Nikhil [1 ]
Pachauri, Rupendra Kumar [2 ]
机构
[1] Univ Petr & Energy Studies, Res & Dev Dept, Dehra Dun, Uttarakhand, India
[2] Univ Petr & Energy Studies, Dept Elect & Elect Engn, Dehra Dun, Uttarakhand, India
[3] Ariel Univ, Dept Elect & Elect Engn, Ariel, Israel
关键词
Photovoltaic; GWO; Parameter extraction; Single-diode model; Double-diode model; MAXIMUM POWER POINT; RENEWABLE ENERGY; DIODE MODEL; EXTRACTION; ALGORITHM; IDENTIFICATION; SYSTEM;
D O I
10.33889/IJMEMS.2021.6.3.054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the field of renewable energy, the extraction of parameters for solar photovoltaic (PV) cells is a widely studied area of research. Parameter extraction of solar PV cell is a highly non-linear complex optimization problem. In this research work, the authors have explored grey wolf optimization (GWO) algorithm to estimate the optimized value of the unknown parameters of a PV cell. The simulation results have been compared with five different pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), chicken swarm optimization (CSO) and cultural algorithm (CA). Furthermore, a comparison with the algorithms existing in the literature is also carried out. The comparative results comprehensively demonstrate that GWO outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and the rate of convergence. Furthermore, the statistical results validate and indicate that GWO algorithm is better than other algorithms in terms of average accuracy and robustness. An extensive comparison of electrical performance parameters: maximum current, voltage, power, and fill factor (FF) has been carried out for both PV model.
引用
收藏
页码:911 / 931
页数:21
相关论文
共 53 条
[1]   Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm [J].
Abd Elaziz, Mohamed ;
Oliva, Diego .
ENERGY CONVERSION AND MANAGEMENT, 2018, 171 :1843-1859
[2]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[3]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[4]   A new estimation approach for determining the I-V characteristics of solar cells [J].
AlRashidi, M. R. ;
AlHajri, M. F. ;
El-Naggar, K. M. ;
Al-Othman, A. K. .
SOLAR ENERGY, 2011, 85 (07) :1543-1550
[5]  
[Anonymous], 2013, J APPL MATH
[6]  
[Anonymous], 2011, 2011 INT C EL INF CO, DOI DOI 10.1109/ICEICE.2011.5777246
[7]   An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector [J].
Aryanpur, Vahid ;
Atabaki, Mohammad Saeid ;
Marzband, Mousa ;
Siano, Pierluigi ;
Ghayoumi, Kiarash .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 112 :58-74
[8]   Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2013, 90 :123-133
[9]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[10]   Parameter identification for solar cell models using harmony search-based algorithms [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2012, 86 (11) :3241-3249