Operational State Complexity and Decidability of Jumping Finite Automata

被引:10
作者
Beier, Simon [1 ]
Holzer, Markus [1 ]
Kutrib, Martin [1 ]
机构
[1] Univ Giessen, Inst Informat, Arndtstr 2, D-35392 Giessen, Germany
来源
DEVELOPMENTS IN LANGUAGE THEORY, DLT 2017 | 2017年 / 10396卷
关键词
Inverse problems - Computability and decidability;
D O I
10.1007/978-3-319-62809-7_6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider jumping finite automata and their operational state complexity and decidability status. Roughly speaking, a jumping automaton is a finite automaton with a non-continuous input. This device has nice relations to semilinear sets and thus to Parikh images of regular sets, which will be exhaustively used in our proofs. In particular, we prove upper bounds on the intersection and complementation. The latter result on the complementation upper bound answers an open problem from G.J. Lavado, G. Pighizzini, S. Seki: Operational State Complexity of Parikh Equivalence [2014]. Moreover, we correct an erroneous result on the inverse homomorphism closure. Finally, we also consider the decidability status of standard problems as regularity, disjointness, universality, inclusion, etc. for jumping finite automata.
引用
收藏
页码:96 / 108
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1979, Introduction to Automata Theory, Languages, and Computation
[2]  
[Anonymous], 2011, Modern Information Retrieval: The Concepts and Technology behind Search
[3]  
Beier S., 2017, 1701 IFIG
[5]  
Fernau Henning, 2015, Implementation and Application of Automata. 20th International Conference, CIAA 2015. Proceedings: LNCS 9223, P89, DOI 10.1007/978-3-319-22360-5_8
[6]   Characterization and complexity results on jumping finite automata [J].
Fernau, Henning ;
Paramasivan, Meenakshi ;
Schmid, Markus L. ;
Vorel, Vojtech .
THEORETICAL COMPUTER SCIENCE, 2017, 679 :31-52
[7]   BOUNDED ALGOL-LIKE LANGUAGES [J].
GINSBURG, S ;
SPANIER, EH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1964, 113 (02) :333-+
[8]  
Huynh D. T., 1986, Elektronische Informationsverarbeitung und Kybernetik (EIK), V22, P147
[9]   THE COMPLEXITY OF EQUIVALENCE PROBLEMS FOR COMMUTATIVE GRAMMARS [J].
HUYNH, DT .
INFORMATION AND CONTROL, 1985, 66 (1-2) :103-121
[10]   DECIDING THE INEQUIVALENCE OF CONTEXT-FREE GRAMMARS WITH 1-LETTER TERMINAL ALPHABET IS SIGMA-2P COMPLETE [J].
HUYNH, DT .
THEORETICAL COMPUTER SCIENCE, 1984, 33 (2-3) :305-326