2D Bose condensation and Goldstone singularities

被引:2
作者
Hnatic, M. [1 ,2 ,3 ]
Kalagov, G. A. [1 ,4 ]
Nalimov, M. Yu [4 ]
机构
[1] Safarik Univ, Fac Sci, Dept Theoret Phys & Astrophys, Pk Angelinum 9, Kosice 04154, Slovakia
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[3] Inst Expt Phys SAS, Watsonova 47, Kosice 04001, Slovakia
[4] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
PERTURBATION-THEORY; CRITICAL EXPONENTS; FIELD-THEORY; EINSTEIN CONDENSATION; MODEL; ABSENCE; FERROMAGNETISM; TRANSITION; EQUATION; SYSTEMS;
D O I
10.1016/j.nuclphysb.2018.09.022
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The present paper is dedicated to the investigation of a two-dimensional Bose system with the density-density type interparticle interaction. We showed the possibility of a finite temperature phase transition and investigated the Goldstone singularities for both homogeneous and vortex ground states. The critical exponents of the O (n > 1) symmetric Emptyset(4) model were computed within the epsilon-expansion for epsilon = 2. (C) 2018 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:206 / 214
页数:9
相关论文
共 38 条
  • [11] The absence of finite-temperature phase transitions in low-dimensional many-body models: a survey and new results
    Gelfert, A
    Nolting, W
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (27) : R505 - R524
  • [13] Realization of Bose-Einstein condensates in lower dimensions -: art. no. 130402
    Görlitz, A
    Vogels, JM
    Leanhardt, AE
    Raman, C
    Gustavson, TL
    Abo-Shaeer, JR
    Chikkatur, AP
    Gupta, S
    Inouye, S
    Rosenband, T
    Ketterle, W
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (13) : 130402/1 - 130402/4
  • [14] 3D Ising model: The scaling equation of state
    Guida, R
    ZinnJustin, J
    [J]. NUCLEAR PHYSICS B, 1997, 489 (03) : 626 - 652
  • [15] Two-dimensional Bose fluids: An atomic physics perspective(*)
    Hadzibabic, Z.
    Dalibard, J.
    [J]. RIVISTA DEL NUOVO CIMENTO, 2011, 34 (06): : 389 - 434
  • [16] The trapped two-dimensional Bose gas:: from Bose-Einstein condensation to Berezinskii-Kosterlitz-Thouless physics
    Hadzibabic, Z.
    Krueger, P.
    Cheneau, M.
    Rath, S. P.
    Dalibard, J.
    [J]. NEW JOURNAL OF PHYSICS, 2008, 10
  • [17] Quantum-Monte-Carlo calculations for Bosons in a two-dimensional harmonic trap
    Heinrichs, S
    Mullin, WJ
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 1998, 113 (3-4) : 231 - 236
  • [18] EXISTENCE OF LONG-RANGE ORDER IN 1 AND 2 DIMENSIONS
    HOHENBERG, PC
    [J]. PHYSICAL REVIEW, 1967, 158 (02): : 383 - +
  • [19] Bose-Einstein condensation beyond perturbation theory: Goldstone singularities and instanton solution
    Honkonen, Juha
    Komarova, Marina V.
    Nalimov, Mikhail Yu.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (03)
  • [20] Renormalization-group investigation of a superconducting U(r)-phase transition using five loops calculations
    Kalagov, G. A.
    Kompaniets, M. V.
    Nalimov, M. Yu.
    [J]. NUCLEAR PHYSICS B, 2016, 905 : 16 - 44