2D Bose condensation and Goldstone singularities

被引:2
作者
Hnatic, M. [1 ,2 ,3 ]
Kalagov, G. A. [1 ,4 ]
Nalimov, M. Yu [4 ]
机构
[1] Safarik Univ, Fac Sci, Dept Theoret Phys & Astrophys, Pk Angelinum 9, Kosice 04154, Slovakia
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[3] Inst Expt Phys SAS, Watsonova 47, Kosice 04001, Slovakia
[4] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
PERTURBATION-THEORY; CRITICAL EXPONENTS; FIELD-THEORY; EINSTEIN CONDENSATION; MODEL; ABSENCE; FERROMAGNETISM; TRANSITION; EQUATION; SYSTEMS;
D O I
10.1016/j.nuclphysb.2018.09.022
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The present paper is dedicated to the investigation of a two-dimensional Bose system with the density-density type interparticle interaction. We showed the possibility of a finite temperature phase transition and investigated the Goldstone singularities for both homogeneous and vortex ground states. The critical exponents of the O (n > 1) symmetric Emptyset(4) model were computed within the epsilon-expansion for epsilon = 2. (C) 2018 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:206 / 214
页数:9
相关论文
共 38 条
  • [1] Five-loop numerical evaluation of critical exponents of the φ4 theory
    Adzhemyan, L. Ts.
    Kompaniets, M. V.
    [J]. 15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013), 2014, 523
  • [2] [Anonymous], METHODS QUANTUM FIEL
  • [3] Berezinskii V. L., 1970, SOV PHYS JETP, V59, P907
  • [4] On the theory of ferromagnetism
    Bloch, F.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1930, 61 (3-4): : 206 - 219
  • [5] Many-body physics with ultracold gases
    Bloch, Immanuel
    Dalibard, Jean
    Zwerger, Wilhelm
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 885 - 964
  • [6] POSSIBLE 1ST-ORDER TRANSITION IN THE 2-DIMENSIONAL GINZBURG-LANDAU MODEL INDUCED BY THERMALLY FLUCTUATING VORTEX CORES
    BORMANN, D
    BECK, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) : 361 - 395
  • [7] PERTURBATION-THEORY AT LARGE ORDER .1. PHI-2N-INTERACTION
    BREZIN, E
    LEGUILLOU, JC
    ZINNJUSTIN, J
    [J]. PHYSICAL REVIEW D, 1977, 15 (06): : 1544 - 1557
  • [8] Quasi-2D Bose-Einstein condensation in an optical lattice
    Burger, S
    Cataliotti, FS
    Fort, C
    Maddaloni, P
    Minardi, F
    Inguscio, M
    [J]. EUROPHYSICS LETTERS, 2002, 57 (01): : 1 - 6
  • [9] Stability of n-vortices in the Ginzburg-Landau equation
    Coleman, J
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) : 1567 - 1569
  • [10] Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas
    Fletcher, Richard J.
    Robert-de-Saint-Vincent, Martin
    Man, Jay
    Navon, Nir
    Smith, Robert P.
    Viebahn, Konrad G. H.
    Hadzibabic, Zoran
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (25)