2D Bose condensation and Goldstone singularities

被引:2
作者
Hnatic, M. [1 ,2 ,3 ]
Kalagov, G. A. [1 ,4 ]
Nalimov, M. Yu [4 ]
机构
[1] Safarik Univ, Fac Sci, Dept Theoret Phys & Astrophys, Pk Angelinum 9, Kosice 04154, Slovakia
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[3] Inst Expt Phys SAS, Watsonova 47, Kosice 04001, Slovakia
[4] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
PERTURBATION-THEORY; CRITICAL EXPONENTS; FIELD-THEORY; EINSTEIN CONDENSATION; MODEL; ABSENCE; FERROMAGNETISM; TRANSITION; EQUATION; SYSTEMS;
D O I
10.1016/j.nuclphysb.2018.09.022
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The present paper is dedicated to the investigation of a two-dimensional Bose system with the density-density type interparticle interaction. We showed the possibility of a finite temperature phase transition and investigated the Goldstone singularities for both homogeneous and vortex ground states. The critical exponents of the O (n > 1) symmetric Emptyset(4) model were computed within the epsilon-expansion for epsilon = 2. (C) 2018 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:206 / 214
页数:9
相关论文
共 38 条
[1]   Five-loop numerical evaluation of critical exponents of the φ4 theory [J].
Adzhemyan, L. Ts. ;
Kompaniets, M. V. .
15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013), 2014, 523
[2]  
[Anonymous], METHODS QUANTUM FIEL
[3]  
Berezinskii V. L., 1970, SOV PHYS JETP, V59, P907
[4]   On the theory of ferromagnetism [J].
Bloch, F. .
ZEITSCHRIFT FUR PHYSIK, 1930, 61 (3-4) :206-219
[5]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[6]   POSSIBLE 1ST-ORDER TRANSITION IN THE 2-DIMENSIONAL GINZBURG-LANDAU MODEL INDUCED BY THERMALLY FLUCTUATING VORTEX CORES [J].
BORMANN, D ;
BECK, H .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) :361-395
[7]   PERTURBATION-THEORY AT LARGE ORDER .1. PHI-2N-INTERACTION [J].
BREZIN, E ;
LEGUILLOU, JC ;
ZINNJUSTIN, J .
PHYSICAL REVIEW D, 1977, 15 (06) :1544-1557
[8]   Quasi-2D Bose-Einstein condensation in an optical lattice [J].
Burger, S ;
Cataliotti, FS ;
Fort, C ;
Maddaloni, P ;
Minardi, F ;
Inguscio, M .
EUROPHYSICS LETTERS, 2002, 57 (01) :1-6
[9]   Stability of n-vortices in the Ginzburg-Landau equation [J].
Coleman, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) :1567-1569
[10]   Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas [J].
Fletcher, Richard J. ;
Robert-de-Saint-Vincent, Martin ;
Man, Jay ;
Navon, Nir ;
Smith, Robert P. ;
Viebahn, Konrad G. H. ;
Hadzibabic, Zoran .
PHYSICAL REVIEW LETTERS, 2015, 114 (25)