Remarks on the fact that the uncertainty principle does not determine the quantum state

被引:13
作者
de Gosson, Maurice [1 ]
Luef, Franz [1 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
关键词
uncertainty principle; mixed states; positivity; Hardy's theorem; quantum blob;
D O I
10.1016/j.physleta.2006.12.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the relation between density matrices and the uncertainty principle; this allows us to justify and explain a recent statement by Man'ko et al. We thereafter use Hardy's uncertainty principle to prove a new result for Wigner distributions dominated by a Gaussian and we relate this result to the coarse-graining of phase-space by "quantum blobs". (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:453 / 457
页数:5
相关论文
共 24 条
[1]   ON A QUANTUM ALGEBRAIC APPROACH TO A GENERALIZED PHASE-SPACE [J].
BOHM, D ;
HILEY, BJ .
FOUNDATIONS OF PHYSICS, 1981, 11 (3-4) :179-203
[2]   Non-positivity of Groenewold operators [J].
Bracken, AJ ;
Wood, JG .
EUROPHYSICS LETTERS, 2004, 68 (01) :1-7
[3]   MIXED STATES WITH POSITIVE WIGNER FUNCTIONS [J].
BROCKER, T ;
WERNER, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) :62-75
[4]   The optimal pure Gaussian state canonically associated to a Gaussian quantum state [J].
de Gosson, M .
PHYSICS LETTERS A, 2004, 330 (3-4) :161-167
[5]   Phase space quantization and the uncertainty principle [J].
de Gosson, MA .
PHYSICS LETTERS A, 2003, 317 (5-6) :365-369
[6]  
DEGOSSON M, 2006, ADV PARTIAL DIFFEREN, V166
[7]   The uncertainty principle: A mathematical survey [J].
Folland, GB ;
Sitaram, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :207-238
[8]  
Hardy G. H., 1933, J. London Math. Soc, V8, P227, DOI [10.1112/jlms/s1-8.3.227, DOI 10.1112/JLMS/S1-8.3.227]
[9]  
HOFER H, 1994, SYMPLECTIC INVARIANT
[10]  
Kastler D., 1965, COMMUN MATH PHYS, V1, P14, DOI [DOI 10.1007/BF01649588, 10.1007/BF01649588]