Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems

被引:63
作者
Han, Xiaotong [1 ,2 ]
Li, Nannan [3 ]
Kang, Ying Bo [1 ,2 ]
Dou, Qingyun [1 ,2 ]
Xiong, Peixun [1 ,2 ]
Liu, Qing [1 ,2 ]
Lee, Jin Yong [3 ]
Dai, Liming [4 ]
Park, Ho Seok [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol SAIHST, Sch Chem Engn, Dept Hlth Sci & Technol, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nano Technol SAINT, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, Inst Basic Sci, Dept Chem, Suwon 16419, South Korea
[4] Univ New South Wales, Sch Chem Engn, Australian Carbon Mat Ctr A CMC, Sydney, NSW 2052, Australia
基金
新加坡国家研究基金会;
关键词
HYDROGEN-PRODUCTION; OXYGEN REDUCTION; NANOSHEETS; OPPORTUNITIES; CHALLENGES; CATALYSTS; EFFICIENT; EVOLUTION; RES2;
D O I
10.1021/acsenergylett.1c00936
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we identify the unique trifunctional active sites of ReS2 and NiFe layered double hydroxide (NiFe-LDH) heteronanosheets (ReS2/NiFe-LDH) for integrated cascade Zn-air battery/electrolyzer systems. Along with the edge and surface sites of NiFe-LDH for both oxygen evolution reaction and oxygen reduction reaction activities, the unprecedented activity of the ReS2/NiFe-LDH heteronanosheets for the hydrogen evolution reaction emerges from the S-O bonds at the heterointerfaces, together with the strong coupling effect and vertical alignment of NiFe-LDH and ReS2. The outstanding trifunctional activities and a well understood mechanism ensure the use of ReS2/NiFe-LDH heteronanosheets for the development of integrated cascade battery/electrolyzer systems, in which electricity storage in the battery mode and H-2 production in the electrolyzer mode are efficiently switched with high round-trip efficiency (61%) and Faraday efficiency (96%). The systems show great promise for cost-effective energy storage and H-2 production applications ranging from the distribution in households to the assembly for electrical vehicles.
引用
收藏
页码:2460 / 2468
页数:9
相关论文
共 39 条
[1]   Recent Progress in Graphene-Based Nanostructured Electrocatalysts for Overall Water Splitting [J].
Ali, Asad ;
Shen, Pei Kang .
ELECTROCHEMICAL ENERGY REVIEWS, 2020, 3 (02) :370-394
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[4]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[5]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[6]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[7]   Direct Electrolytic Splitting of Seawater: Opportunities and Challenges [J].
Dresp, Soeren ;
Dionigi, Fabio ;
Klingenhof, Malte ;
Strasser, Peter .
ACS ENERGY LETTERS, 2019, 4 (04) :933-942
[8]   Catalytic applications of layered double hydroxides: recent advances and perspectives [J].
Fan, Guoli ;
Li, Feng ;
Evans, David G. ;
Duan, Xue .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (20) :7040-7066
[9]   Vertically Oriented Arrays of ReS2 Nanosheets for Electrochemical Energy Storage and Electrocatalysis [J].
Gao, Jian ;
Li, Lu ;
Tan, Jiawei ;
Sun, Hao ;
Li, Baichang ;
Idrobo, Juan Carlos ;
Singh, Chandra Veer ;
Lu, Toh-Ming ;
Koratkar, Nikhil .
NANO LETTERS, 2016, 16 (06) :3780-3787
[10]   Hollow Mo-doped CoP nanoarrays for efficient overall water splitting [J].
Guan, Cao ;
Xiao, Wen ;
Wu, Haijun ;
Liu, Ximeng ;
Zang, Wenjie ;
Zhang, Hong ;
Ding, Jun ;
Feng, Yuan Ping ;
Pennycook, Stephen J. ;
Wang, John .
NANO ENERGY, 2018, 48 :73-80