Pursuing the Fundamental Limits for Quantum Communication

被引:18
作者
Wang, Xin [1 ]
机构
[1] Baidu Res, Inst Quantum Comp, Beijing 100193, Peoples R China
关键词
Upper bound; Quantum mechanics; Quantum channel; Quantum entanglement; Channel capacity; Qubit; Quantum communication; Quantum capacity; quantum channel; quantum communication; semidefinite programming; private capacity; CONVERSE BOUNDS; CAPACITY; CHANNEL; ENTANGLEMENT; PRIVATE; TELEPORTATION; TRANSMISSION; STATE;
D O I
10.1109/TIT.2021.3068818
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The quantum capacity of a noisy quantum channel determines the maximal rate at which we can code reliably over asymptotically many uses of the channel, and it characterizes the channel's ultimate ability to transmit quantum information coherently. In this paper, we derive single-letter upper bounds on the quantum and private capacities of quantum channels. The quantum capacity of a quantum channel is always no larger than the quantum capacity of its extended channels, since the extensions of the channel can be considered as assistance from the environment. By optimizing the parametrized extended channels with specific structures such as the flag structure, we obtain new upper bounds on the quantum capacity of the original quantum channel. Furthermore, we extend our approach to estimating the fundamental limits of private communication and one-way entanglement distillation. As notable applications, we establish improved upper bounds to the quantum and private capacities for fundamental quantum channels of interest in quantum information, some of which are also the sources of noise in superconducting quantum computing. In particular, our upper bounds on the quantum capacities of the depolarizing channel and the generalized amplitude damping channel are strictly better than previously best-known bounds for certain regimes.
引用
收藏
页码:4524 / 4532
页数:9
相关论文
共 70 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]   Asymptotic relative entropy of entanglement for orthogonally invariant states [J].
Audenaert, K ;
De Moor, B ;
Vollbrecht, KGH ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 66 (03) :323101-323111
[3]   Fundamental Limits on the Capacities of Bipartite Quantum Interactions [J].
Baeuml, Stefan ;
Das, Siddhartha ;
Wilde, Mark M. .
PHYSICAL REVIEW LETTERS, 2018, 121 (25)
[4]   On quantum fidelities and channel capacities [J].
Barnum, H ;
Knill, E ;
Nielsen, MA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1317-1329
[5]   Information transmission through a noisy quantum channel [J].
Barnum, H ;
Nielsen, MA ;
Schumacher, B .
PHYSICAL REVIEW A, 1998, 57 (06) :4153-4175
[6]  
Bauml S, 2019, ARXIV190704181
[7]   Quantum codes from neural networks [J].
Bausch, Johannes ;
Leditzky, Felix .
NEW JOURNAL OF PHYSICS, 2020, 22 (02)
[8]  
Bennett C H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[9]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[10]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824