Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation

被引:41
作者
Zayed, E. M. E. [1 ]
Al-Nowehy, Abdul-Ghani [2 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
[2] Ain Shams Univ, Dept Math, Fac Educ, Cairo, Egypt
来源
OPTIK | 2016年 / 127卷 / 12期
关键词
Modified simple equation method; Exp-function method; The soliton ansatz method; Bright-dark-singular soliton solutions; Hyperbolic nonlinear Schrodinger equation; EXP-FUNCTION METHOD; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION METHOD; EVOLUTION; MEW;
D O I
10.1016/j.ijleo.2016.02.010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper studies the exact solutions with parameters and optical soliton solutions of the (2 + 1) dimensional hyperbolic nonlinear Schrodinger equation which describes space-time evolutions of slowly varying envelopes. When these parameters are taken special values, the optical solitary wave solutions are derived from the exact solutions. There are some integration tools that are adopted to retrieve soliton solutions. They are the modified simple equation method, the exp-function method, the soliton ansatz method and other two Sub-ODE methods. Bright-dark-singular soliton solutions and some trigonometric function solutions are obtained along with their respective constraint conditions. We compare between the results yielding from these integration tools. A comparison between our results in this paper and the well-known results is also given. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:4970 / 4983
页数:14
相关论文
共 55 条
[21]   A multiple exp-function method for nonlinear differential equations and its application [J].
Ma, Wen-Xiu ;
Huang, Tingwen ;
Zhang, Yi .
PHYSICA SCRIPTA, 2010, 82 (06)
[22]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[23]   The tanh method .2. Perturbation technique for conservative systems [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :569-575
[24]   The tanh method .1. Exact solutions of nonlinear evolution and wave equations [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :563-568
[25]   Exact solutions for Calogero-Bogoyavlenskii-Schiff equation using symmetry method [J].
Moatimid, G. M. ;
El-Shiekh, Rehab M. ;
Al-Nowehy, Abdul-Ghani A. A. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 :455-462
[26]  
Moatimid G.M., 2013, NONLINEAR SCI LETT A, V4, P1
[27]   Similarity reduction and similarity solutions of Zabolotskay-Khoklov equation with a dissipative term via symmetry method [J].
Moussa, M. H. M. ;
El Shikh, Rehab. M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 371 (02) :325-335
[28]   Optical Solitons with Power Law Nonlinearity and Hamiltonian Perturbations: An Exact Solution [J].
Sarma, Amarendra K. ;
Saha, Manirupa ;
Biswas, Anjan .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2010, 31 (09) :1048-1056
[29]  
TAN BK, 1993, SCI CHINA SER B, V36, P1367
[30]   Lie symmetry analysis of the quantum Zakharov equations [J].
Tang, Xiao-Yan ;
Shukla, Padma Kant .
PHYSICA SCRIPTA, 2007, 76 (06) :665-668