Kramers-like escape driven by fractional Gaussian noise

被引:57
作者
Sliusarenko, Oleksii Yu. [1 ]
Gonchar, Vsevolod Yu. [1 ]
Chechkin, Aleksei V. [1 ,2 ]
Sokolov, Igor M. [3 ]
Metzler, Ralf [4 ]
机构
[1] NSC KIPT, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[2] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[4] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
CONTROLLED INTRACHAIN REACTIONS; SINGLE-PARTICLE TRAJECTORIES; BROWNIAN-MOTION; ANOMALOUS DIFFUSION; MATHEMATICAL-ANALYSIS; MARKOV-PROCESSES; HURST EXPONENTS; LEVY FLIGHTS; TRANSPORT; TIME;
D O I
10.1103/PhysRevE.81.041119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the escape from a potential well of a test particle driven by fractional Gaussian noise with Hurst exponent 0 < H < 1. From a numerical analysis we demonstrate the exponential distribution of escape times from the well and analyze in detail the dependence of the mean escape time on the Hurst exponent H and the particle diffusivity D. We observe different behavior for the subdiffusive (antipersistent) and superdiffusive (persistent) domains. In particular, we find that the escape becomes increasingly faster for decreasing values of H, consistent with previous findings on the first passage behavior. Approximate analytical calculations are shown to support the numerically observed dependencies.
引用
收藏
页数:14
相关论文
共 96 条
[51]   Nonergodicity mimics inhomogeneity in single particle tracking [J].
Lubelski, Ariel ;
Sokolov, Igor M. ;
Klafter, Joseph .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[52]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[53]   SELF-AFFINE FRACTALS AND FRACTAL DIMENSION [J].
MANDELBROT, BB .
PHYSICA SCRIPTA, 1985, 32 (04) :257-260
[54]   IS TRANSPORT IN POROUS-MEDIA ALWAYS DIFFUSIVE - A COUNTEREXAMPLE [J].
MATHERON, G ;
DEMARSILY, G .
WATER RESOURCES RESEARCH, 1980, 16 (05) :901-917
[55]   Hurst exponents, Markov processes, and fractional Brownian motion [J].
McCauley, Joseph L. ;
Gunaratne, Gemunu H. ;
Bassler, Kevin E. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) :1-9
[56]   Kramers' escape problem with anomalous kinetics: non-exponential decay of the survival probability [J].
Metzler, R ;
Klafter, J .
CHEMICAL PHYSICS LETTERS, 2000, 321 (3-4) :238-242
[57]  
Metzler R, 2009, ACTA PHYS POL B, V40, P1315
[58]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[59]   The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics [J].
Metzler, R ;
Klafter, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (31) :R161-R208
[60]  
Mikosch T, 2002, ANN APPL PROBAB, V12, P23