Kramers-like escape driven by fractional Gaussian noise

被引:57
作者
Sliusarenko, Oleksii Yu. [1 ]
Gonchar, Vsevolod Yu. [1 ]
Chechkin, Aleksei V. [1 ,2 ]
Sokolov, Igor M. [3 ]
Metzler, Ralf [4 ]
机构
[1] NSC KIPT, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[2] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[4] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
CONTROLLED INTRACHAIN REACTIONS; SINGLE-PARTICLE TRAJECTORIES; BROWNIAN-MOTION; ANOMALOUS DIFFUSION; MATHEMATICAL-ANALYSIS; MARKOV-PROCESSES; HURST EXPONENTS; LEVY FLIGHTS; TRANSPORT; TIME;
D O I
10.1103/PhysRevE.81.041119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the escape from a potential well of a test particle driven by fractional Gaussian noise with Hurst exponent 0 < H < 1. From a numerical analysis we demonstrate the exponential distribution of escape times from the well and analyze in detail the dependence of the mean escape time on the Hurst exponent H and the particle diffusivity D. We observe different behavior for the subdiffusive (antipersistent) and superdiffusive (persistent) domains. In particular, we find that the escape becomes increasingly faster for decreasing values of H, consistent with previous findings on the first passage behavior. Approximate analytical calculations are shown to support the numerically observed dependencies.
引用
收藏
页数:14
相关论文
共 96 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   Survival probability and order statistics of diffusion on disordered media [J].
Acedo, L ;
Yuste, SB .
PHYSICAL REVIEW E, 2002, 66 (01)
[3]  
[Anonymous], 1995, Oxford science publications
[4]  
[Anonymous], 1989, FOKKERPLANCK EQUATIO
[5]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971
[6]   Theory of Single File Diffusion in a Force Field [J].
Barkai, E. ;
Silbey, R. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)
[7]   Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance [J].
Bassler, Kevin E. ;
Gunaratne, Gemunu H. ;
McCauley, Joseph L. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) :343-353
[8]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[9]   Relative dispersion in fully developed turbulence: The Richardson's law and intermittency corrections [J].
Boffetta, G ;
Sokolov, IM .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :4
[10]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293