Estimation and optimal designs for linear Haar-wavelet models

被引:7
|
作者
Tian, Yongge
Herzberg, Agnes M.
机构
[1] Shanghai Univ Finance & Econom, Sch Econ, Shanghai 200433, Peoples R China
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
关键词
Haar-wavelet; linear model; best linear unbiased estimator; covariance matrix; information matrix; optimal design; REGRESSION;
D O I
10.1007/s00184-006-0078-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper gives an analytical expression for the best linear unbiased estimator (BLUE) of the unknown parameters in the linear Haar-wavelet model. From the analytical expression, we solve for the eigenvalues of the covariance matrix of the BLUE in analytical form. Further, we use these eigenvalues. to construct some conventional discrete optimal designs for the model. The equivalences among these optimal designs are demonstrated and some examples are also given.
引用
收藏
页码:311 / 324
页数:14
相关论文
共 50 条
  • [31] Haar Wavelet-Based Approach for Optimal Control of Second-Order Linear Systems in Time Domain
    H. R. Karimi
    B. Moshiri
    B. Lohmann
    P. Jabehdar Maralani
    Journal of Dynamical and Control Systems, 2005, 11 : 237 - 252
  • [32] Haar wavelet-based approach for optimal control of second-order linear systems in time domain
    Karimi, HR
    Moshiri, B
    Lohmann, B
    Maralani, PJ
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2005, 11 (02) : 237 - 252
  • [33] Optimal designs for a linear-model compositional response
    Rodriguez-Diaz, J. M.
    Rivas-Lopez, M. J.
    Santos-Martin, M. T.
    Marinas-Collado, I
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (01) : 139 - 148
  • [34] Identification Scheme for Fractional Hammerstein Models With the Delayed Haar Wavelet
    Kajal Kothari
    Utkal Mehta
    Vineet Prasad
    Jito Vanualailai
    IEEE/CAAJournalofAutomaticaSinica, 2020, 7 (03) : 882 - 891
  • [35] Optimal designs for a linear-model compositional response
    J. M. Rodríguez-Díaz
    M. J. Rivas-López
    M. T. Santos-Martín
    I. Mariñas-Collado
    Stochastic Environmental Research and Risk Assessment, 2020, 34 : 139 - 148
  • [36] D-optimal designs for hierarchical linear models with intraclass covariance structure
    Lei He
    Rong-Xian Yue
    Statistical Papers, 2021, 62 : 1349 - 1361
  • [37] Optimal designs for copula models
    Perrone, E.
    Muller, W. G.
    STATISTICS, 2016, 50 (04) : 917 - 929
  • [38] Optimal designs in growth curve models - II Correlated model for quadratic growth: optimal designs for parameter estimation and growth prediction
    Abt, M
    Gaffke, N
    Liski, EP
    Sinha, BK
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 67 (02) : 287 - 296
  • [39] ON OPTIMAL DESIGNS FOR NONREGULAR MODELS
    Lin, Yi
    Martin, Ryan
    Yang, Min
    ANNALS OF STATISTICS, 2019, 47 (06) : 3335 - 3359
  • [40] A wavelet collocation method for optimal control of non-linear time-delay systems via Haar wavelets
    Borzabadi, Akbar Hashemi
    Asadi, Solayman
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2015, 32 (01) : 41 - 54