Gluing vertex algebras

被引:27
作者
Creutzig, Thomas [1 ]
Kanade, Shashank [2 ]
McRae, Robert [3 ,4 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Denver, Dept Math, Denver, CO 80208 USA
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Vertex operator algebras; Tensor categories; Commutative algebra objects; Braid-reversed equivalences; Coset conformal field theory; Kazhdan-Lusztig categories; MODIFIED REGULAR REPRESENTATIONS; BRAIDED TENSOR CATEGORIES; DIFFERENTIAL-OPERATORS; VIRASORO-ALGEBRAS; MODULE CATEGORIES; LOOP GROUP; AFFINE; FUSION; RATIONALITY; EXTENSIONS;
D O I
10.1016/j.aim.2021.108174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relate commutative algebras in braided tensor categories to braid-reversed tensor equivalences, motivated by vertex algebra representation theory. First, for C a braided tensor category, we give a detailed account of the canonical algebra construction in the Deligne product C ? C-rev. Especially, we show that if C is semisimple but not necessarily finite or rigid, then circle plus(x is an element of Irr(C)) X' ? X is a commutative algebra, where X' is a representing object for the functor HomC(center dot & nbsp; circle times(C) X, 1(C)) (assuming X' exists) and the sum runs over all inequivalent simple objects of U. Conversely, let A = circle plus(i is an element of I)& nbsp;U-i & nbsp;?& nbsp;V-i be a simple commutative algebra in a Deligne product U ? V with U semisimple and rigid but not necessarily finite, and V rigid but not necessarily semisimple. We show that if the unit objects 1U and 1V form a commuting pair in A in a suitable sense, then there is a braid-reversed equivalence between (sub)categories of U and V that sends U-i to V-i*.& nbsp;These results apply when U and V are braided (vertex) tensor categories of modules for simple vertex operator algebras U and V, respectively: Given tau : Irr(U) -> Obj(V) such that tau(U) = V, we glue U and V along U ? V via tau to create A = circle plus(x is an element of Irr(U)) X' circle times tau(X). Then under certain conditions, tau extends to a braid-reversed equivalence between U and V if and only if A has a simple conformal vertex algebra structure that (conformally) extends U circle times V. As examples, we glue suitable Kazhdan-Lusztig categories at generic levels to construct new vertex algebras extending the tensor product of two affine vertex subalgebras, and we prove braid-reversed equivalences between certain module subcategories for affine vertex algebras and W-algebras at admissible levels. (C)& nbsp;2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:72
相关论文
共 67 条
[41]  
Huang Y.-Z., ARXIV10124198
[42]  
Huang Y.-Z., ARXIV 1110 1931
[43]  
Huang Y.-Z., 1994, Lie Theory and Geometry, V123, P349
[44]  
Huang Y.-Z., ARXIV10124197
[45]  
Huang Y.-Z., 2014, CONFORMAL FIELD THEO, P169
[46]  
Huang Y.-Z., ARXIV10124202
[47]   Full field algebras [J].
Huang, Yi-Zhi ;
Kong, Liang .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :345-396
[48]   Braided Tensor Categories and Extensions of Vertex Operator Algebras [J].
Huang, Yi-Zhi ;
Kirillov, Alexander, Jr. ;
Lepowsky, James .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) :1143-1159
[49]   Tensor categories and the mathematics of rational and logarithmic conformal field theory [J].
Huang, Yi-Zhi ;
Lepowsky, James .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (49)
[50]   A THEORY OF TENSOR-PRODUCTS FOR MODULE CATEGORIES FOR A VERTEX OPERATOR ALGEBRA .3. [J].
HUANG, YZ ;
LEPOWSKY, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 100 (1-3) :141-171