Gluing vertex algebras

被引:26
作者
Creutzig, Thomas [1 ]
Kanade, Shashank [2 ]
McRae, Robert [3 ,4 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Denver, Dept Math, Denver, CO 80208 USA
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Vertex operator algebras; Tensor categories; Commutative algebra objects; Braid-reversed equivalences; Coset conformal field theory; Kazhdan-Lusztig categories; MODIFIED REGULAR REPRESENTATIONS; BRAIDED TENSOR CATEGORIES; DIFFERENTIAL-OPERATORS; VIRASORO-ALGEBRAS; MODULE CATEGORIES; LOOP GROUP; AFFINE; FUSION; RATIONALITY; EXTENSIONS;
D O I
10.1016/j.aim.2021.108174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relate commutative algebras in braided tensor categories to braid-reversed tensor equivalences, motivated by vertex algebra representation theory. First, for C a braided tensor category, we give a detailed account of the canonical algebra construction in the Deligne product C ? C-rev. Especially, we show that if C is semisimple but not necessarily finite or rigid, then circle plus(x is an element of Irr(C)) X' ? X is a commutative algebra, where X' is a representing object for the functor HomC(center dot & nbsp; circle times(C) X, 1(C)) (assuming X' exists) and the sum runs over all inequivalent simple objects of U. Conversely, let A = circle plus(i is an element of I)& nbsp;U-i & nbsp;?& nbsp;V-i be a simple commutative algebra in a Deligne product U ? V with U semisimple and rigid but not necessarily finite, and V rigid but not necessarily semisimple. We show that if the unit objects 1U and 1V form a commuting pair in A in a suitable sense, then there is a braid-reversed equivalence between (sub)categories of U and V that sends U-i to V-i*.& nbsp;These results apply when U and V are braided (vertex) tensor categories of modules for simple vertex operator algebras U and V, respectively: Given tau : Irr(U) -> Obj(V) such that tau(U) = V, we glue U and V along U ? V via tau to create A = circle plus(x is an element of Irr(U)) X' circle times tau(X). Then under certain conditions, tau extends to a braid-reversed equivalence between U and V if and only if A has a simple conformal vertex algebra structure that (conformally) extends U circle times V. As examples, we glue suitable Kazhdan-Lusztig categories at generic levels to construct new vertex algebras extending the tensor product of two affine vertex subalgebras, and we prove braid-reversed equivalences between certain module subcategories for affine vertex algebras and W-algebras at admissible levels. (C)& nbsp;2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:72
相关论文
共 67 条
[1]   Fusion rules for the vertex operator algebras M(1)+ and VL+ [J].
Abe, T ;
Dong, CY ;
Li, HS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) :171-219
[2]   Rationality, regularity, and C2-cofiniteness [J].
Abe, T ;
Buhl, G ;
Dong, CY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (08) :3391-3402
[3]  
[Аганаджич М Aganagic Mina], 2018, [Труды Московского математического общества, Trudy Moskovskogo matematicheskogo obshchestva], V79, P1
[4]  
[Anonymous], ARXIV160305645
[5]   W-algebras as coset vertex algebras [J].
Arakawa, Tomoyuki ;
Creutzig, Thomas ;
Linshaw, Andrew R. .
INVENTIONES MATHEMATICAE, 2019, 218 (01) :145-195
[6]   RATIONALITY OF ADMISSIBLE AFFINE VERTEX ALGEBRAS IN THE CATEGORY O [J].
Arakawa, Tomoyuki .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) :67-93
[7]   Rationality of W-algebras: principal nilpotent cases [J].
Arakawa, Tomoyuki .
ANNALS OF MATHEMATICS, 2015, 182 (02) :565-604
[8]  
Arkhipov S, 2002, INT MATH RES NOTICES, V2002, P165
[9]   On infinite order simple current extensions of vertex operator algebras [J].
Auger, Jean ;
Rupert, Matt .
VERTEX ALGEBRAS AND GEOMETRY, 2018, 711 :143-168
[10]  
Bakalov B., 2001, U LECT SER, V21