Synthesis, Development, and Testing of High-Surface-Area Polymer-Based Adsorbents for the Selective Recovery of Uranium from Seawater

被引:82
作者
Oyola, Yatsandra [1 ]
Janke, Christopher J. [2 ]
Dai, Sheng [1 ]
机构
[1] Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA
关键词
INDUCED GRAFT-COPOLYMERIZATION; SEA-WATER; AMIDOXIME/CARBOXYL GROUP; TITANIUM-DIOXIDE; METHACRYLIC-ACID; URANYL-ION; METAL-IONS; ADSORPTION; ACRYLONITRILE; POLYETHYLENE;
D O I
10.1021/acs.iecr.5b03981
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The ocean contains uranium with an approximate concentration of 3.34 ppb, which can serve as an incredible supply source to sustain nuclear energy in the United States. Unfortunately, technology currently available to recover uranium from seawater is not efficient enough and mining uranium on land is still more economical. We have developed polymer-based adsorbents with high uranium adsorption capacities by grafting amidoxime onto high-surface-area polyethylene (PE) fibers. Various process conditions have been screened, in combination with developing a rapid testing protocol (<24 h), to optimize the process. These adsorbents are synthesized through radiation-induced grafting of acrylonitrile (AN) and methacrylic acid (MAA) onto PE fibers, followed by the conversion of nitriles to amidoximes and basic conditioning. In addition, the uranium adsorption capacity, measured in units of g(U)/kg(ads), is greatly increased by reducing the diameter of the PE fiber or changing its morphology. An increase in the surface area of the PE polymer fiber allows for more grafting sites that are positioned in more-accessible locations, thereby increasing access to grafted molecules that would normally be located in the interior of a fiber with a larger diameter. Polymer fibers with hollow morphologies are able to adsorb beyond 1 order of magnitude more uranium from simulated seawater than current commercially available adsorbents. Several high-surface-area fibers were tested in natural seawater and were able to extract 5-7 times more uranium than any adsorbent reported to date.
引用
收藏
页码:4149 / 4160
页数:12
相关论文
共 57 条
[1]  
Akkas P, 2000, J APPL POLYM SCI, V78, P284, DOI 10.1002/1097-4628(20001010)78:2<284::AID-APP70>3.0.CO
[2]  
2-9
[3]  
[Anonymous], BARC NEWSL
[4]  
[Anonymous], 1992, US Patent, Patent No. 5162074
[5]   DEVELOPMENT OF SORBERS FOR THE RECOVERY OF URANIUM FROM SEAWATER .2. THE ACCUMULATION OF URANIUM FROM SEAWATER BY RESINS CONTAINING AMIDOXIME AND IMIDOXIME FUNCTIONAL-GROUPS [J].
ASTHEIMER, L ;
SCHENK, HJ ;
WITTE, EG ;
SCHWOCHAU, K .
SEPARATION SCIENCE AND TECHNOLOGY, 1983, 18 (04) :307-339
[6]   Ordered nanoporous polymer-carbon composites [J].
Choi, M ;
Ryoo, R .
NATURE MATERIALS, 2003, 2 (07) :473-476
[7]   Adsorption of uranium ions by resins with amidoxime and amidoxime/carboxyl group prepared by radiation-induced polymerization [J].
Choi, SH ;
Choi, MS ;
Park, YT ;
Lee, KP ;
Kang, HD .
RADIATION PHYSICS AND CHEMISTRY, 2003, 67 (3-4) :387-390
[8]   Adsorption of UO22+ by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group [J].
Choi, SH ;
Nho, YC .
RADIATION PHYSICS AND CHEMISTRY, 2000, 57 (02) :187-193
[9]   Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films [J].
Choi, SH ;
Nho, YC .
RADIATION PHYSICS AND CHEMISTRY, 2000, 58 (02) :157-168
[10]   Uranium Sorption on Various Forms of Titanium Dioxide - Influence of Surface Area, Surface Charge, and Impurities [J].
Comarmond, M. Josick ;
Payne, Timothy E. ;
Harrison, Jennifer J. ;
Thiruvoth, Sangeeth ;
Wong, Henri K. ;
Aughterson, Robert D. ;
Lumpkin, Gregory R. ;
Mueller, Katharina ;
Foerstendorf, Harald .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (13) :5536-5542