Effects due to backscattering and pseudogap features in graphene nanoribbons with single vacancies

被引:50
作者
Deretzis, I. [1 ,2 ]
Fiori, G. [3 ]
Iannaccone, G. [3 ]
La Magna, A. [2 ]
机构
[1] Univ Catania, Scuola Super, I-95123 Catania, Italy
[2] CNR IMM, I-95121 Catania, Italy
[3] Univ Pisa, Dipartimento Ingn Informaz Elettron Informat, I-56122 Pisa, Italy
关键词
SIMULATION;
D O I
10.1103/PhysRevB.81.085427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a systematic study of electron backscattering phenomena during conduction for graphene nanoribbons with single-vacancy scatterers and dimensions within the capabilities of modern lithographic techniques. Our analysis builds upon an ab initio parameterized semiempirical model that breaks electron-hole symmetry and nonequilibrium Green's-function methods for the calculation of the conductance distribution g. The underlying mechanism is based on wave-function localizations and perturbations that in the case of the first pi-pi* plateau can give rise to impuritylike pseudogaps with both donor and acceptor characteristics. Confinement and geometry are crucial for the manifestation of such effects. Self-consistent quantum transport calculations characterize vacancies as local charging centers that can induce electrostatic inhomogeneities on the ribbon topology.
引用
收藏
页数:5
相关论文
共 26 条
[1]   Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons [J].
Biel, Blanca ;
Blase, X. ;
Triozon, Francois ;
Roche, Stephan .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[2]   Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2008, 78 (08)
[3]   Structural, electronic, and chemical properties of nanoporous carbon [J].
Carlsson, JM ;
Scheffler, M .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[6]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[7]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[8]   Electronic structure of epitaxial graphene nanoribbons on SiC(0001) [J].
Deretzis, I. ;
La Magna, A. .
APPLIED PHYSICS LETTERS, 2009, 95 (06)
[9]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
[10]   Simulation of graphene nanoribbon field-effect transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :760-762