The strong existence and the pathwise uniqueness of solutions with -vorticity of the 2D stochastic Euler equations are proved. The noise is multiplicative and it involves the first derivatives. A Lagrangian approach is implemented, where a stochastic flow solving a nonlinear flow equation is constructed. The stability under regularizations is also proved.
机构:
UNS, CNRS, INLN, F-06560 Valbonne, France
Los Alamos Natl Lab, CNLS, LANL, MS B258, Los Alamos, NM 87545 USAUNS, CNRS, INLN, F-06560 Valbonne, France
机构:
Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil
Pakter, Renato
Levin, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil
机构:
UNS, CNRS, INLN, F-06560 Valbonne, France
Los Alamos Natl Lab, CNLS, LANL, MS B258, Los Alamos, NM 87545 USAUNS, CNRS, INLN, F-06560 Valbonne, France
机构:
Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil
Pakter, Renato
Levin, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil