Existence and Uniqueness for Stochastic 2D Euler Flows with Bounded Vorticity

被引:40
作者
Brzezniak, Zdzislaw [2 ]
Flandoli, Franco [1 ]
Maurelli, Mario [3 ]
机构
[1] Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[3] TUB, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
EQUATIONS; DYNAMICS;
D O I
10.1007/s00205-015-0957-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The strong existence and the pathwise uniqueness of solutions with -vorticity of the 2D stochastic Euler equations are proved. The noise is multiplicative and it involves the first derivatives. A Lagrangian approach is implemented, where a stochastic flow solving a nonlinear flow equation is constructed. The stability under regularizations is also proved.
引用
收藏
页码:107 / 142
页数:36
相关论文
共 45 条
[1]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[2]  
Ambrosio L, 2008, LECT NOTES UNIONE MA, V5, P3
[3]  
[Anonymous], FACETTES MATH MECANI
[4]  
[Anonymous], 2012, Mathematical theory of incompressible nonviscous fluids
[5]  
Aubin T., 1998, Springer Monographs in Mathematics
[6]   A RIGOROUS STABILITY RESULT FOR THE VLASOV-POISSON SYSTEM IN 3 DIMENSIONS [J].
BATT, J ;
REIN, G .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 164 :133-154
[7]   ISOTROPIC STOCHASTIC FLOWS [J].
BAXENDALE, P ;
HARRIS, TE .
ANNALS OF PROBABILITY, 1986, 14 (04) :1155-1179
[8]   Anomalous scaling in the N-point functions of a passive scalar [J].
Bernard, D ;
Gawedzki, K ;
Kupiainen, A .
PHYSICAL REVIEW E, 1996, 54 (03) :2564-2572
[9]   Martingale solutions for stochastic Euler equations [J].
Bessaih, H .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1999, 17 (05) :713-725
[10]  
Bessaih H, 2000, ELECTRON J PROBAB, V5